BOOKS - Synthetic Data for Deep Learning Generate Synthetic Data for Decision Making ...
Synthetic Data for Deep Learning Generate Synthetic Data for Decision Making and Applications with Python and R - Necmi Gursakal, Sadullah Celik, Esma Birisci 2022 PDF | EPUB Apress BOOKS
ECO~14 kg CO²

1 TON

Views
28373

Telegram
 
Synthetic Data for Deep Learning Generate Synthetic Data for Decision Making and Applications with Python and R
Author: Necmi Gursakal, Sadullah Celik, Esma Birisci
Year: 2022
Pages: 235
Format: PDF | EPUB
File size: 41.2 MB
Language: ENG



Pay with Telegram STARS
Book Description: Synthetic data is a powerful tool for deep learning and decision-making applications. This book provides a comprehensive guide to generating synthetic data using Python and R, including practical examples and case studies. The authors explore the potential of synthetic data in various fields such as computer vision, natural language processing, and predictive modeling, and demonstrate how to create realistic and diverse synthetic data sets that can be used for training and testing machine learning models. They also discuss the challenges and limitations of synthetic data and provide strategies for addressing these issues. The book begins by introducing the concept of synthetic data and its importance in deep learning, followed by an overview of the technologies and tools used to generate it. The authors then delve into the details of creating synthetic data, including data augmentation techniques, generative models, and transfer learning. They also cover advanced topics such as domain adaptation, data imputation, and semi-supervised learning. Throughout the book, the authors emphasize the need to understand the process of technology evolution and the importance of developing a personal paradigm for perceiving the technological process of developing modern knowledge. They argue that this is essential for survival in a rapidly changing world and for achieving the unification of people in a warring state. They also highlight the need to study and understand the process of technology evolution in order to harness its power for the betterment of society. Book Outline: 1. Introduction to Synthetic Data and Deep Learning 2. Technologies and Tools for Generating Synthetic Data 3. Creating Synthetic Data: Data Augmentation Techniques, Generative Models, and Transfer Learning 4.
Синтетические данные - это мощный инструмент для глубокого обучения и принятия решений. Эта книга содержит исчерпывающее руководство по генерации синтетических данных с помощью Python и R, включая практические примеры и тематические исследования. Авторы исследуют потенциал синтетических данных в различных областях, таких как компьютерное зрение, обработка естественного языка и прогнозное моделирование, и демонстрируют, как создавать реалистичные и разнообразные наборы синтетических данных, которые можно использовать для обучения и тестирования моделей машинного обучения. Они также обсуждают проблемы и ограничения синтетических данных и предоставляют стратегии для решения этих проблем. Книга начинается с введения понятия синтетических данных и их важности в глубоком обучении, за которым следует обзор технологий и инструментов, используемых для их генерации. Затем авторы углубляются в детали создания синтетических данных, включая методы увеличения данных, генеративные модели и обучение передаче. Они также охватывают такие продвинутые темы, как адаптация доменов, вменение данных и полуавтоматическое обучение. На протяжении всей книги авторы подчеркивают необходимость понимания процесса эволюции технологий и важность выработки личностной парадигмы восприятия технологического процесса развития современных знаний. Они утверждают, что это необходимо для выживания в быстро меняющемся мире и для достижения объединения людей в воюющем государстве. Они также подчеркивают необходимость изучения и понимания процесса эволюции технологий, чтобы использовать их силу для улучшения общества. Структура книги: 1. Введение в синтетические данные и глубокое обучение 2. Технологии и инструменты для генерации синтетических данных 3. Создание синтетических данных: методы увеличения данных, генеративные модели и обучение передаче 4.
''

You may also be interested in:

Synthetic Data for Deep Learning Generate Synthetic Data for Decision Making and Applications with Python and R
Data Science from Scratch Want to become a Data Scientist? This guide for beginners will walk you through the world of Data Science, Big Data, Machine Learning and Deep Learning
Deep Learning for Data Architects: Unleash the power of Python|s deep learning algorithms (English Edition)
Deep Learning for Data Architects Unleash the power of Python|s deep learning algorithms
Deep Learning for Data Architects Unleash the power of Python|s deep learning algorithms
Artificial Intelligence For Business How Your Company Can Make More Profit with Machine Learning, Data Science, Big Data, and Deep Learning
Neural Networks and Deep Learning Neural Networks & Deep Learning, Deep Learning, Big Data
Learn Data Analytics For Beginners Data Analyst, Deep Learning, Neural Network, Python Data Analytics
Learning Snowflake SQL and Scripting Generate, Retrieve, and Automate Snowflake Data
Learning Snowflake SQL and Scripting: Generate, Retrieve, and Automate Snowflake Data
Python for Data Analysis The Ultimate Beginner|s Guide to Data Analytics, Deep Learning
Disease Prediction using Machine Learning, Deep Learning and Data Analytics
Disease Prediction using Machine Learning, Deep Learning and Data Analytics
Machine Learning and Deep Learning in Neuroimaging Data Analysis
Machine Learning and Deep Learning in Neuroimaging Data Analysis
Data Scientist Pocket Guide Over 600 Concepts, Terminologies, and Processes of Machine Learning and Deep Learning Assembled
Data Science Crash Course Thyroid Disease Classification and Prediction Using Machine Learning and Deep Learning with Python GUI, Second Edition
Python for Data Analysis From the Beginner to Expert Crash Course 3.0 that will Change your Life as a Digital Programmer Thanks to the Minimalism of this Manual. Deep Machine Learning and Big Data
Python Machine Learning The Ultimate Guide for Beginners to Machine Learning with Python, Programming and Deep Learning, Artificial Intelligence, Neural Networks, and Data Science
Machine Learning for Beginners A Math Guide to Mastering Deep Learning and Business Application. Understand How Artificial Intelligence, Data Science, and Neural Networks Work Through Real Examples
Python for Data Science Data analysis and Deep learning with Python coding and programming
Tableau for Salesforce Visualise data and generate insights with the leading platforms for data analytics
Tableau for Salesforce Visualise data and generate insights with the leading platforms for data analytics
Python Programming The Crash Course for Python – Learn the Secrets of Machine Learning, Data Science Analysis and Artificial Intelligence. Introduction to Deep Learning for Beginners
Python Programming The Crash Course for Python Projects – Learn the Secrets of Machine Learning, Data Science Analysis and Artificial Intelligence. Introduction to Deep Learning for Beginners
Computer Programming This Book Includes Machine Learning for Beginners, Machine Learning with Python, Deep Learning with Python, Python for Data Analysis
Tableau for Salesforce: Visualise data and generate insights with the leading platforms for data analytics (English Edition)
Deep Learning with Structured Data (Final Edition)
Deep Learning Innovations and Their Convergence With Big Data
Python Programming, Deep Learning 3 Books in 1 A Complete Guide for Beginners, Python Coding for AI, Neural Networks, & Machine Learning, Data Science/Analysis with Practical Exercises for Learners
Coding with Python The Ultimate Guide For Data Science, a Smart Way to Program With Python, Understand Data Analytics and Deep Learning Faster Computer Programming for Beginners (Book Python 3)
Advanced Deep Learning Applications in Big Data Analytics
Practical Synthetic Data Generation Balancing Privacy and the Broad Availability of Data
Practical Synthetic Data Generation Balancing Privacy and the Broad Availability of Data (Early Release)
Deep Learning Techniques and Optimization Strategies in Big Data Analytics
Data-Driven Clinical Decision-Making Using Deep Learning in Imaging
Data-Driven Clinical Decision-Making Using Deep Learning in Imaging
Deep Learning for Data Analytics Foundations, Biomedical Applications, and Challenges
Modern Deep Learning for Tabular Data: Novel Approaches to Common Modeling Problems
Deep Learning at Scale At the Intersection of Hardware, Software, and Data (Final Release)