BOOKS - Financial Data Engineering Design and Build Data-Driven Financial Products
Financial Data Engineering Design and Build Data-Driven Financial Products - Tamer Khraisha 2024 EPUB O’Reilly Media, Inc. BOOKS
ECO~19 kg CO²

2 TON

Views
36963

Telegram
 
Financial Data Engineering Design and Build Data-Driven Financial Products
Author: Tamer Khraisha
Year: 2024
Pages: 571
Format: EPUB
File size: 11.4 MB
Language: ENG



Pay with Telegram STARS
Book Description: Financial Data Engineering Design and Build Data-Driven Financial Products is a comprehensive guide to designing and building data-driven financial products. The book covers the entire lifecycle of a data engineering project, from data ingestion and storage to data processing and analysis, and finally, to data visualization and reporting. It provides practical advice on how to work with large datasets, handle missing data, and perform statistical analysis. The book also discusses the importance of data governance, data security, and data privacy, and how to ensure that data engineering projects are compliant with these requirements. The book is divided into four parts: Part I: Introduction to Financial Data Engineering, Part II: Data Ingestion, Part III: Data Storage and Processing, and Part IV: Data Visualization and Reporting. Each part includes several chapters that provide a detailed overview of the topics covered in that part. The book concludes with a chapter on the future of financial data engineering and the challenges that lie ahead. Throughout the book, the author emphasizes the need for a holistic approach to data engineering, one that considers both the technical and business aspects of data engineering.
Financial Data Engineering Design and Build Data-Driven Financial Products - комплексное руководство по проектированию и созданию финансовых продуктов на основе данных. Книга охватывает весь жизненный цикл проекта по разработке данных, от приема и хранения данных до обработки и анализа данных и, наконец, до визуализации и отчетности по данным. Он предоставляет практические советы по работе с большими наборами данных, обработке отсутствующих данных и статистическому анализу. В книге также обсуждается важность управления данными, безопасности данных и конфиденциальности данных, а также то, как обеспечить соответствие проектов по разработке данных этим требованиям. Книга состоит из четырех частей: Часть I: Введение в разработку финансовых данных, Часть II: Ввод данных, Часть III: Хранение и обработка данных и Часть IV: Визуализация данных и отчетность. Каждая часть включает в себя несколько глав, которые дают подробный обзор тем, затронутых в этой части. Книга заканчивается главой о будущем инженерии финансовых данных и проблемах, которые предстоит решить. На протяжении всей книги автор подчеркивает необходимость целостного подхода к разработке данных, который учитывает как технические, так и бизнес-аспекты разработки данных.
Financial Data Engineering Design and Build Data-Driven Financial Products est un guide complet pour la conception et la création de produits financiers basés sur les données. livre couvre tout le cycle de vie d'un projet de développement de données, de la réception et du stockage des données au traitement et à l'analyse des données, en passant par la visualisation et le reporting des données. Il fournit des conseils pratiques sur la façon de travailler avec de grands ensembles de données, le traitement des données manquantes et l'analyse statistique. livre traite également de l'importance de la gestion des données, de la sécurité des données et de la confidentialité des données, ainsi que de la façon dont les projets de développement de données répondent à ces exigences. livre se compose de quatre parties : Partie I : Introduction au développement des données financières, Partie II : Saisie des données, Partie III : Stockage et traitement des données et Partie IV : Visualisation des données et rapports. Chaque partie comprend plusieurs chapitres qui donnent un aperçu détaillé des sujets abordés dans cette partie. livre se termine par un chapitre sur l'avenir de l'ingénierie des données financières et les problèmes à résoudre. Tout au long du livre, l'auteur souligne la nécessité d'une approche globale du développement des données qui tienne compte des aspects techniques et commerciaux du développement des données.
Financial Data Engineering Design and Build Data-Driven Financial Products es una guía integral para diseñar y crear productos financieros basados en datos. libro cubre todo el ciclo de vida del proyecto de desarrollo de datos, desde la recepción y almacenamiento de datos hasta el procesamiento y análisis de datos y, por último, hasta la visualización y presentación de informes sobre los datos. Proporciona consejos prácticos para trabajar con grandes conjuntos de datos, procesamiento de datos faltantes y análisis estadístico. libro también analiza la importancia de la gestión de datos, la seguridad de los datos y la privacidad de los datos, así como cómo garantizar que los proyectos de desarrollo de datos cumplan con estos requisitos. libro consta de cuatro partes: Parte I: Introducción al desarrollo de datos financieros, Parte II: Introducción de datos, Parte III: Almacenamiento y procesamiento de datos y Parte IV: Visualización de datos e informes. Cada parte incluye varios capítulos que proporcionan una visión detallada de los temas tratados en esta parte. libro termina con un capítulo sobre el futuro de la ingeniería de datos financieros y los problemas a resolver. A lo largo del libro, el autor subraya la necesidad de un enfoque holístico del desarrollo de datos que tenga en cuenta tanto los aspectos técnicos como empresariales del desarrollo de datos.
Financial Data Engineering Design and Build Data-Driven Financial Products: guida completa alla progettazione e alla creazione di prodotti finanziari basati sui dati. Il libro comprende l'intero ciclo di vita del progetto di sviluppo dei dati, dall'acquisizione e storage all'elaborazione e all'analisi dei dati, fino alla visualizzazione e al reporting dei dati. Fornisce consigli pratici per gestire set di dati di grandi dimensioni, elaborare dati mancanti e analizzare statisticamente. Il libro affronta anche l'importanza della gestione dei dati, della sicurezza dei dati e della privacy dei dati, nonché il modo in cui i progetti di sviluppo dei dati soddisfano tali requisiti. Il libro è composto da quattro parti: Parte I: Introduzione allo sviluppo dei dati finanziari, Parte II: Input, Parte III: Conservazione e elaborazione dei dati e Parte IV: Visualizzazione dei dati e reporting. Ogni parte comprende diversi capitoli che forniscono una panoramica dettagliata dei temi toccati in questa parte. Il libro si conclude con un capitolo sull'ingegneria futura dei dati finanziari e i problemi da risolvere. Durante tutto il libro, l'autore sottolinea la necessità di un approccio olistico allo sviluppo dei dati che tenga conto sia degli aspetti tecnici che aziendali dello sviluppo dei dati.
Financial Data Engineering Design and Build Data-Driven Financial Products - ein umfassender itfaden für die Gestaltung und Erstellung datenbasierter Finanzprodukte. Das Buch deckt den gesamten benszyklus eines Datenentwicklungsprojekts ab, von der Datenübernahme und -speicherung über die Datenverarbeitung und -analyse bis hin zur Datenvisualisierung und -berichterstattung. Es bietet praktische Tipps für den Umgang mit großen Datensätzen, den Umgang mit fehlenden Daten und statistische Analysen. Das Buch diskutiert auch die Bedeutung von Datenmanagement, Datensicherheit und Datenschutz und wie sichergestellt werden kann, dass Datenentwicklungsprojekte diese Anforderungen erfüllen. Das Buch besteht aus vier Teilen: Teil I: Einführung in die Finanzdatenentwicklung, Teil II: Dateneingabe, Teil III: Datenspeicherung und -verarbeitung und Teil IV: Datenvisualisierung und Reporting. Jeder Teil enthält mehrere Kapitel, die einen detaillierten Überblick über die in diesem Teil behandelten Themen geben. Das Buch endet mit einem Kapitel über die Zukunft des Financial Data Engineering und die zu lösenden Herausforderungen. Während des gesamten Buches betont der Autor die Notwendigkeit eines ganzheitlichen Ansatzes für die Datenentwicklung, der sowohl die technischen als auch die geschäftlichen Aspekte der Datenentwicklung berücksichtigt.
''
Finansal Veri Mühendisliği Tasarımı ve Veri Odaklı Finansal Ürünler Oluşturma - veri odaklı finansal ürünlerin tasarlanması ve oluşturulması için kapsamlı bir rehber. Kitap, veri alma ve depolamadan veri işleme ve analizine ve son olarak veri görselleştirme ve raporlamaya kadar bir veri geliştirme projesinin tüm yaşam döngüsünü kapsar. Büyük veri kümeleriyle çalışma, eksik verileri işleme ve istatistiksel analiz konusunda pratik tavsiyeler sunar. Kitap ayrıca veri yönetimi, veri güvenliği ve veri gizliliğinin önemini ve veri geliştirme projelerinin bu gereksinimleri nasıl karşılayacağını tartışıyor. Kitap dört bölümden oluşmaktadır: Bölüm I: Finansal Veri Geliştirmeye Giriş, Bölüm II: Veri Girişi, Bölüm III: Veri Depolama ve İşleme ve Bölüm IV: Veri Görselleştirme ve Raporlama. Her bölüm, bu bölümde ele alınan konulara ayrıntılı bir genel bakış sunan birkaç bölüm içerir. Kitap, finansal veri mühendisliğinin geleceği ve çözülmesi gereken zorluklar hakkında bir bölümle sona erer. Kitap boyunca yazar, veri geliştirmenin hem teknik hem de iş yönlerini dikkate alan veri geliştirmeye bütünsel bir yaklaşımın gerekliliğini vurgulamaktadır.
تصميم هندسة البيانات المالية وبناء المنتجات المالية القائمة على البيانات - دليل شامل لتصميم وبناء المنتجات المالية القائمة على البيانات. ويغطي الكتاب كامل دورة حياة مشروع تطوير البيانات، من استلام البيانات وتخزينها إلى معالجة البيانات وتحليلها، وأخيرا إلى تصور البيانات والإبلاغ عنها. ويقدم المشورة العملية بشأن العمل مع مجموعات البيانات الكبيرة، ومعالجة البيانات المفقودة والتحليل الإحصائي. يناقش الكتاب أيضًا أهمية إدارة البيانات وأمن البيانات وخصوصية البيانات وكيفية ضمان تلبية مشاريع تطوير البيانات لهذه المتطلبات. يتكون الكتاب من أربعة أجزاء: الجزء الأول: مقدمة لتطوير البيانات المالية، الجزء الثاني: إدخال البيانات، الجزء الثالث: تخزين البيانات ومعالجتها، والجزء الرابع: تصور البيانات والإبلاغ عنها. يتضمن كل جزء عدة فصول تقدم لمحة عامة مفصلة عن الموضوعات التي يغطيها هذا الجزء. ينتهي الكتاب بفصل عن مستقبل هندسة البيانات المالية والتحديات التي يجب حلها. في جميع أنحاء الكتاب، يؤكد المؤلف على الحاجة إلى نهج شامل لتطوير البيانات يأخذ في الاعتبار الجوانب التقنية والتجارية لتطوير البيانات.
Financial Data Engineering Design and Build Data-Driven Financial Products-基於數據的金融產品設計和創建的綜合指南。該書涵蓋了數據開發項目的整個生命周期,從數據接收和存儲到數據處理和分析再到數據可視化和報告。它提供有關處理大型數據集,處理丟失的數據和統計分析的實用建議。該書還討論了數據管理,數據安全和數據隱私的重要性,以及如何確保數據開發項目滿足這些要求。該書分為四個部分:第一部分:財務數據開發簡介,第二部分:數據輸入,第三部分:數據存儲和處理,第四部分:數據可視化和報告。每個部分包括幾個章節,這些章節詳細介紹了本部分中涉及的主題。本書的結尾是有關財務數據工程的未來以及要解決的問題的一章。在整個書中,作者強調需要對數據開發采取整體方法,同時考慮數據開發的技術和業務方面。

You may also be interested in:

Financial Data Engineering Design and Build Data-Driven Financial Products
Financial Data Engineering Design and Build Data-Driven Financial Products
Data Engineering with AWS - Second Edition: Acquire the skills to design and build AWS-based data transformation pipelines like a pro
Ultimate Azure Data Engineering Build Robust Data Engineering Systems on Azure with SQL, ETL, Data Modeling, and Power BI for Business Insights and Crack Azure Certifications
Ultimate Azure Data Engineering Build Robust Data Engineering Systems on Azure with SQL, ETL, Data Modeling, and Power BI for Business Insights and Crack Azure Certifications
Advanced Data Analytics with AWS Explore Data Analysis Concepts in the Cloud to Gain Meaningful Insights and Build Robust Data Engineering Workflows Across Diverse Data Sources
Advanced Data Analytics with AWS Explore Data Analysis Concepts in the Cloud to Gain Meaningful Insights and Build Robust Data Engineering Workflows Across Diverse Data Sources
Data Engineering Design Patterns Recipes for Solving the Most Common Data Engineering Problems (3rd Early Release)
Data Engineering Design Patterns Recipes for Solving the Most Common Data Engineering Problems (3rd Early Release)
Advanced Data Analytics with AWS: Explore Data Analysis Concepts in the Cloud to Gain Meaningful Insights and Build Robust Data Engineering Workflows Across Diverse Data Sources (English Edition)
Fundamentals of Data Engineering: Plan and Build Robust Data Systems
Data Quality Engineering in Financial Services Applying Manufacturing Techniques to Data
Implementing Data Mesh Design, Build, and Implement Data Contracts, Data Products, and Data Mesh
Implementing Data Mesh Design, Build, and Implement Data Contracts, Data Products, and Data Mesh
Data Engineering with Scala and Spark: Build streaming and batch pipelines that process massive amounts of data using Scala
Ultimate Data Engineering with Databricks Develop Scalable Data Pipelines Using Data Engineering|s Core Tenets Such as Delta Tables, Ingestion, Transformation, Security, and Scalability
Ultimate Data Engineering with Databricks Develop Scalable Data Pipelines Using Data Engineering|s Core Tenets Such as Delta Tables, Ingestion, Transformation, Security, and Scalability
Data Center Handbook Plan, Design, Build, and Operations of a Smart Data Center, 2nd Edition
Implementing Data Mesh: Principles and Practice to Design, Build, and Implement Data Mesh
Ultimate AWS Data Engineering Design, Implement and Optimize Scalable Data Solutions on AWS with Practical Workflows and Visual Aids for Unmatched Impact
Engineering Resilient Systems on AWS Design, Build, and Test for Resilience
Engineering Resilient Systems on AWS Design, Build, and Test for Resilience
Hands-on Site Reliability Engineering Build Capability to Design, Deploy, Monitor, and Sustain Enterprise Software Systems at Scale
Mastering Data Engineering and Analytics with Databricks A Hands-on Guide to Build Scalable Pipelines Using Databricks, Delta Lake, and MLflow
Mastering Data Engineering and Analytics with Databricks A Hands-on Guide to Build Scalable Pipelines Using Databricks, Delta Lake, and MLflow
Azure Data Engineering Cookbook: Get well versed in various data engineering techniques in Azure using this recipe-based guide, 2nd Edition
Getting Started with DuckDB: A practical guide for accelerating your data science, data analytics, and data engineering workflows
Practical Data Science with Jupyter Explore Data Cleaning, Pre-processing, Data Wrangling, Feature Engineering and Machine Learning using Python and Jupyter
Build Your Own Electronics Workshop Everything You Need to Design a Work Space, Use Test Equipment, Build and Troubleshoot Circuits
Self-build How to design and build your own home, 2nd Edition
Data in Context: Models as Enablers for Managing and Using Data (The Enterprise Engineering Series)
Data Engineering with AWS: A Comprehensive Guide to Building Robust Data Pipelines
C++ High Performance for Financial Systems: Build efficient and optimized financial systems by leveraging the power of C++
Hands on Azure Data Studio Microsoft|s Open Platform for Data Engineering and Analytics
Functional Reverse Engineering of Machine Tools (Computers in Engineering Design and Manufacturing)
Practical Data Analytics for BFSI Leveraging Data Science for Driving Decisions in Banking, Financial Services, and Insurance Operations
Design Engineering Journey (Synthesis Lectures on Mechanical Engineering)
Exploring Engineering An Introduction to Engineering and Design 5th Edition
Data Engineering with dbt: A practical guide to building a cloud-based, pragmatic, and dependable data platform with SQL
Proceedings of Data Analytics and Management: ICDAM 2021, Volume 1 (Lecture Notes on Data Engineering and Communications Technologies, 90)