BOOKS - Modern Data Mining with Python A risk-managed approach to developing and depl...
Modern Data Mining with Python A risk-managed approach to developing and deploying explainable and efficient algorithms using ModelOps - Dushyant Singh Sengar, Vikash Chandra 2024 EPUB BPB Publications BOOKS
ECO~18 kg CO²

1 TON

Views
791116

 
Modern Data Mining with Python A risk-managed approach to developing and deploying explainable and efficient algorithms using ModelOps
Author: Dushyant Singh Sengar, Vikash Chandra
Year: 2024
Pages: 438
Format: EPUB
File size: 20.0 MB
Language: ENG



Modern Data Mining with Python: A Risk-Managed Approach to Developing and Deploying Explainable and Efficient Algorithms Using ModelOps In today's fast-paced technological era, it is crucial to understand the process of technology evolution and its impact on humanity. With the advent of big data and machine learning, the world has witnessed tremendous advancements in various fields, including healthcare, finance, marketing, and more. However, these developments have also raised concerns about the survival of humanity and the need for a personal paradigm to perceive the technological process of developing modern knowledge. Modern Data Mining with Python is a guidebook that addresses these concerns by providing a risk-managed approach to implementing data mining techniques that are both explainable and efficient. The book emphasizes the importance of understanding the ethical implications of machine learning models and their potential biases, ensuring algorithmic transparency, and adhering to responsible AI principles. The book begins with the basics of statistics and exploratory data analysis, laying the foundation for advanced deep learning techniques.
Современный интеллектуальный анализ данных с помощью Python: риск-управляемый подход к разработке и развертыванию объяснимых и эффективных алгоритмов с использованием ModelOps В современную стремительную технологическую эру крайне важно понимать процесс эволюции технологий и его влияние на человечество. С появлением больших данных и машинного обучения мир стал свидетелем огромных достижений в различных областях, включая здравоохранение, финансы, маркетинг и многое другое. Однако эти разработки также вызвали опасения по поводу выживания человечества и необходимости личной парадигмы восприятия технологического процесса развития современных знаний. Modern Data Mining with Python - это руководство, которое решает эти проблемы, предоставляя управляемый рисками подход к внедрению методов интеллектуального анализа данных, которые одновременно объяснимы и эффективны. В книге подчеркивается важность понимания этических последствий моделей машинного обучения и их потенциальных предубеждений, обеспечения алгоритмической прозрачности и соблюдения принципов ответственного ИИ. Книга начинается с основ статистики и исследовательского анализа данных, закладывая основу для передовых техник глубокого обучения.
L'exploration de données moderne avec Python : une approche à risque pour développer et déployer des algorithmes intelligibles et efficaces en utilisant ModelOps Dans l'ère technologique rapide d'aujourd'hui, il est essentiel de comprendre le processus d'évolution de la technologie et son impact sur l'humanité. Avec l'avènement du Big Data et du Machine arning, le monde a connu d'énormes progrès dans divers domaines, dont la santé, la finance, le marketing et bien plus encore. Mais ces développements ont également suscité des inquiétudes quant à la survie de l'humanité et à la nécessité d'un paradigme personnel de perception du processus technologique de développement des connaissances modernes. Moderne Data Mining with Python est un guide qui répond à ces défis en fournissant une approche gérable des risques pour mettre en œuvre des techniques d'exploration de données à la fois compréhensibles et efficaces. livre souligne l'importance de comprendre les implications éthiques des modèles d'apprentissage automatique et leurs préjugés potentiels, d'assurer la transparence algorithmique et de respecter les principes de l'IA responsable. livre commence par les bases de la statistique et de l'analyse des données exploratoires, jetant les bases de techniques avancées d'apprentissage profond.
Moderna minería de datos con Python: un enfoque controlado por riesgos para desarrollar e implementar algoritmos explicables y eficientes utilizando ModelOps En la actual era tecnológica rápida, es fundamental comprender el proceso de evolución de la tecnología y su impacto en la humanidad. Con la llegada del big data y el aprendizaje automático, el mundo ha sido testigo de enormes avances en una variedad de áreas, incluyendo salud, finanzas, marketing y más. n embargo, estos desarrollos también han despertado preocupaciones sobre la supervivencia de la humanidad y la necesidad de un paradigma personal para percibir el proceso tecnológico del desarrollo del conocimiento moderno. Modern Data Mining with Python es una guía que resuelve estos problemas proporcionando un enfoque de gestión de riesgos para implementar técnicas de minería de datos que son a la vez explicables y eficientes. libro destaca la importancia de comprender las implicaciones éticas de los modelos de aprendizaje automático y sus posibles sesgos, asegurar la transparencia algorítmica y respetar los principios de una IA responsable. libro comienza con los fundamentos de la estadística y el análisis de datos de investigación, sentando las bases para técnicas avanzadas de aprendizaje profundo.
Moderne Data Mining mit Python: ein risikogesteuerter Ansatz zur Entwicklung und Bereitstellung erklärbarer und effizienter Algorithmen mit ModelOps In der heutigen schnelllebigen technologischen Ära ist es entscheidend, den Prozess der Technologieentwicklung und seine Auswirkungen auf die Menschheit zu verstehen. Mit dem Aufkommen von Big Data und maschinellem rnen hat die Welt enorme Fortschritte in verschiedenen Bereichen wie Gesundheitswesen, Finanzen, Marketing und mehr erlebt. Diese Entwicklungen haben jedoch auch Bedenken hinsichtlich des Überlebens der Menschheit und der Notwendigkeit eines persönlichen Paradigmas für die Wahrnehmung des technologischen Prozesses der Entwicklung des modernen Wissens aufgeworfen. Modern Data Mining mit Python ist ein itfaden, der diese Herausforderungen angeht, indem er einen risikogesteuerten Ansatz für die Implementierung von Data-Mining-Techniken bietet, die sowohl erklärbar als auch effektiv sind. Das Buch betont, wie wichtig es ist, die ethischen Implikationen von Machine-arning-Modellen und ihre potenziellen Vorurteile zu verstehen, algorithmische Transparenz zu gewährleisten und die Prinzipien einer verantwortungsvollen KI einzuhalten. Das Buch beginnt mit den Grundlagen der Statistik und der Forschungsdatenanalyse und legt den Grundstein für fortgeschrittene Deep-arning-Techniken.
''
Python ile Modern Veri Madenciliği: ModelOps'u Kullanarak Açıklanabilir ve Verimli Algoritmalar Geliştirmek ve Uygulamak İçin Risk Odaklı Bir Yaklaşım Günümüzün hızlı tempolu teknolojik çağında, teknoloji evrimi sürecini ve insanlık üzerindeki etkisini anlamak zorunludur. Büyük veri ve makine öğreniminin ortaya çıkmasıyla birlikte, dünya sağlık, finans, pazarlama ve daha fazlası dahil olmak üzere çeşitli alanlarda muazzam gelişmelere tanık oldu. Bununla birlikte, bu gelişmeler aynı zamanda insanlığın hayatta kalması ve modern bilginin gelişiminin teknolojik sürecinin algılanması için kişisel bir paradigma ihtiyacı konusundaki endişeleri de artırdı. Python ile Modern Veri Madenciliği, hem açıklanabilir hem de etkili olan veri madenciliği tekniklerini uygulamak için risk odaklı bir yaklaşım sağlayarak bu sorunları çözen bir kılavuzdur. Kitap, makine öğrenme modellerinin etik etkilerini ve potansiyel önyargılarını anlamanın, algoritmik şeffaflığı sağlamanın ve sorumlu AI ilkelerine bağlı kalmanın önemini vurgulamaktadır. Kitap, gelişmiş derin öğrenme teknikleri için zemin hazırlayan bir istatistik ve keşif veri analizi çerçevesiyle başlıyor.
تعدين البيانات الحديث باستخدام Python: نهج قائم على المخاطر لتطوير ونشر خوارزميات قابلة للتفسير وفعالة باستخدام ModelOps في العصر التكنولوجي سريع الخطى اليوم، من الضروري فهم عملية تطور التكنولوجيا وتأثيرها على البشرية. مع ظهور البيانات الضخمة والتعلم الآلي، شهد العالم تقدمًا هائلاً في مختلف المجالات، بما في ذلك الرعاية الصحية والتمويل والتسويق والمزيد. بيد أن هذه التطورات أثارت أيضا شواغل بشأن بقاء البشرية والحاجة إلى نموذج شخصي لتصور العملية التكنولوجية لتطوير المعرفة الحديثة. Modern Data Mining with Python هو دليل يحل هذه المشكلات من خلال توفير نهج قائم على المخاطر لتنفيذ تقنيات استخراج البيانات التي يمكن تفسيرها وفعاليتها. يؤكد الكتاب على أهمية فهم الآثار الأخلاقية لنماذج التعلم الآلي وتحيزاتها المحتملة، وضمان الشفافية الخوارزمية، والالتزام بمبادئ الذكاء الاصطناعي المسؤول. يبدأ الكتاب بإطار من الإحصاءات وتحليل البيانات الاستكشافية، مما يضع الأساس لتقنيات التعلم العميق المتقدمة.

You may also be interested in:

Statistics, Data Mining, and Machine Learning in Astronomy: A Practical Python Guide for the Analysis of Survey Data (Princeton Series in Modern Observational Astronomy, 1)
Python Machine Learning Discover the Essentials of Machine Learning, Data Analysis, Data Science, Data Mining and Artificial Intelligence Using Python Code with Python Tricks
Modern Data Mining with Python A risk-managed approach to developing and deploying explainable and efficient algorithms using ModelOps
Modern Data Mining with Python A risk-managed approach to developing and deploying explainable and efficient algorithms using ModelOps
Modern Data Mining with Python: A risk-managed approach to developing and deploying explainable and efficient algorithms using ModelOps (English Edition)
Modern Data Architectures with Python: A practical guide to building and deploying data pipelines, data warehouses, and data lakes with Python
Data Science and Analytics with Python (Chapman and Hall CRC Data Mining and Knowledge Discovery Series)
Statistics, Data Mining and Machine Learning in Astronomy A Practical Python Guide for the Analysis of Survey Data, Updated Ed
Advanced Data Science and Analytics with Python (Chapman and Hall CRC Data Mining and Knowledge Discovery Series)
Advanced Data Science and Analytics with Python (Chapman & Hall/CRC Data Mining and Knowledge Discovery Series)
Data Mining and Exploration From Traditional Statistics to Modern Data Science
Web Data Mining with Python
Технологии анализа данных. Data Mining, Visual Mining, Text Mining, OLAP
Python Data Mining Quick Start Guide: A beginner|s guide to extracting valuable insights from your data
Data Mining with Python Theory, Application, and Case Studies
Data Mining with Python Theory, Application, and Case Studies
Data Mining for Business Analytics Concepts, Techniques and Applications in Python
Automate ChatGPT Prompts for Data Science with Python Enhanced Coding for the Modern Python Developer
Advances in Knowledge Discovery and Data Mining: 27th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2023, Osaka, Japan, May 25-28, … Notes in Computer Science Book 13936)
Data Analytics Practical Guide to Leveraging the Power of Algorithms, Data Science, Data Mining, Statistics, Big Data, and Predictive Analysis to Improve Business, Work, and Life
Data Analytics: Practical Guide to Leveraging the Power of Algorithms, Data Science, Data Mining, Statistics, Big Data, and Predictive Analysis to Improve Business, Work, and Life
Data Labeling in Machine Learning with Python: Explore modern ways to prepare labeled data for training and fine-tuning ML and generative AI models
Mining the Social Web Data Mining Facebook, Twitter, LinkedIn, Instagram, GitHub, and More, 3rd Edition
Big Data, Data Mining and Data Science Algorithms, Infrastructures, Management and Security
Coding with Python The Ultimate Guide For Data Science, a Smart Way to Program With Python, Understand Data Analytics and Deep Learning Faster Computer Programming for Beginners (Book Python 3)
Python Data Science The Bible. The Ultimate Beginner’s Guide to Learn Data Analysis, from the Basics and Essentials, to Advance Content! (Python Programming, Python Crash Course, Coding Made Easy Book
Python Data Science The Complete Guide to Data Analytics + Machine Learning + Big Data Science + Pandas Python. The Easy Way to Programming (Exercises Included)
Python for Data Analysis A Complete Crash Course on Python for Data Science to Learn Essential Tools and Python Libraries, NumPy, Pandas, Jupyter Notebook, Analysis and Visualization
Build Your Own Ethereum Mining Raspberry Pi Full Node [Python Client] Mining on Raspberry Pi
Python and R for the Modern Data Scientist (Early Release)
Modern Business Analytics Increasing the Value of Your Data with Python and R
Machine Learning with Python The Ultimate Guide to Learn Machine Learning Algorithms. Includes a Useful Section about Analysis, Data Mining and Artificial Intelligence in Business Applications
Python Data Analysis Transforming Raw Data into Actionable Intelligence with Python|s Data Analysis Capabilities
Python Data Analysis Transforming Raw Data into Actionable Intelligence with Python|s Data Analysis Capabilities
Deciphering Data Architectures Choosing Between a Modern Data Warehouse, Data Fabric, Data Lakehouse, and Data Mesh
Deciphering Data Architectures Choosing Between a Modern Data Warehouse, Data Fabric, Data Lakehouse, and Data Mesh
Big data A Guide to Big Data Trends, Artificial Intelligence, Machine Learning, Predictive Analytics, Internet of Things, Data Science, Data Analytics, Business Intelligence, and Data Mining
Graph Data Science with Python and Neo4j: Hands-on Projects on Python and Neo4j Integration for Data Visualization and Analysis Using Graph Data … Enterprise Strategies (English Edition)
Python for Excel A Modern Environment for Automation and Data Analysis
Data Warehouse and Data Mining Concepts, techniques and real life applications