BOOKS - Model-Based Machine Learning
Model-Based Machine Learning - John Winn  PDF  BOOKS
ECO~31 kg CO²

3 TON

Views
82400

Telegram
 
Model-Based Machine Learning
Author: John Winn
Format: PDF
File size: PDF 31 MB
Language: English



Pay with Telegram STARS
The book's main themes are: 1. The importance of studying and understanding the evolution of technology. 2. The need to develop a personal paradigm for perceiving the technological process of developing modern knowledge as the basis for the survival of humanity and the unification of people in a warring state. 3. The use of model-based machine learning as a tool for understanding and communicating the behavior of complex systems. 4. The separation of assumptions from the detailed mathematics of algorithms, making it easier to understand and communicate the behavior of a machine learning system. 5. The application of model-based machine learning to a variety of domains and problems. ModelBased Machine Learning: A Paradigm Shift in Understanding and Communicating Complex Systems Introduction: In today's world, machine learning (ML) has become an integral part of our lives, from virtual assistants to self-driving cars, and from medical diagnosis to financial forecasting. However, the rapid growth and diversification of ML applications have also created a fundamental challenge - connecting the abstract mathematics of a particular ML technique to a concrete real-world problem.
Основные темы книги: 1. Важность изучения и понимания эволюции технологий. 2. Необходимость выработки личностной парадигмы восприятия технологического процесса развития современного знания как основы выживания человечества и объединения людей в воюющем государстве. 3. Использование машинного обучения на основе моделей в качестве инструмента для понимания и информирования о поведении сложных систем. 4. Отделение предположений от детальной математики алгоритмов, облегчающее понимание и сообщение поведения системы машинного обучения. 5. Применение основанного на моделях машинного обучения к различным областям и проблемам. Машинное обучение на основе моделей: смена парадигмы в понимании и общении со сложными системами Введение: В современном мире машинное обучение (ML) стало неотъемлемой частью нашей жизни - от виртуальных помощников до беспилотных автомобилей и от медицинской диагностики до финансового прогнозирования. Однако быстрый рост и диверсификация приложений ML также создали фундаментальную проблему - соединение абстрактной математики конкретной техники ML с конкретной реальной проблемой.
Principaux thèmes du livre : 1. L'importance d'étudier et de comprendre l'évolution des technologies. 2. La nécessité d'élaborer un paradigme personnel pour percevoir le processus technologique du développement de la connaissance moderne comme la base de la survie de l'humanité et de l'unification des gens dans un État en guerre. 3. Utiliser l'apprentissage automatique basé sur des modèles comme outil pour comprendre et communiquer le comportement des systèmes complexes. 4. Séparer les hypothèses des mathématiques détaillées des algorithmes, ce qui facilite la compréhension et la communication du comportement du système d'apprentissage automatique. 5. Appliquer l'apprentissage automatique basé sur des modèles à différents domaines et problèmes. L'apprentissage automatique basé sur des modèles : changement de paradigme dans la compréhension et la communication avec les systèmes complexes Introduction : Dans le monde moderne, l'apprentissage automatique (ML) est devenu une partie intégrante de nos vies - des assistants virtuels aux véhicules sans pilote, en passant par le diagnostic médical et la prévision financière. Cependant, la croissance rapide et la diversification des applications ML ont également créé un problème fondamental - l'association des mathématiques abstraites de la technique particulière ML à un problème réel particulier.
Temas principales del libro: 1. La importancia de estudiar y entender la evolución de la tecnología. 2. La necesidad de desarrollar un paradigma personal para percibir el proceso tecnológico del desarrollo del conocimiento moderno como base para la supervivencia de la humanidad y la unión de las personas en un Estado en guerra. 3. Utilizar el aprendizaje automático basado en modelos como herramienta para comprender e informar sobre el comportamiento de sistemas complejos. 4. Separar las suposiciones de las matemáticas detalladas de algoritmos, facilitando la comprensión y comunicación del comportamiento del sistema de aprendizaje automático. 5. Aplicar el aprendizaje automático basado en modelos a diferentes áreas y problemas. Aprendizaje automático basado en modelos: un cambio de paradigma en la comprensión y comunicación con sistemas complejos Introducción: En el mundo actual, el aprendizaje automático (ML) se ha convertido en una parte integral de nuestras vidas, desde asistentes virtuales hasta vehículos no tripulados y desde diagnósticos médicos hasta predicciones financieras. n embargo, el rápido crecimiento y la diversificación de las aplicaciones de ML también han creado un problema fundamental: la conexión de las matemáticas abstractas de una técnica específica de ML con un problema real específico.
Temas principais do livro: 1. A importância do estudo e da compreensão da evolução da tecnologia. 2. A necessidade de estabelecer um paradigma pessoal para a percepção do processo tecnológico de desenvolvimento do conhecimento moderno como base para a sobrevivência humana e a união das pessoas num estado em guerra. 3. Usar o aprendizado de máquinas baseado em modelos como ferramenta para compreender e informar sobre o comportamento de sistemas complexos. 4. Separando os pressupostos da matemática detalhada dos algoritmos, facilitando a compreensão e a comunicação do comportamento do sistema de aprendizagem de máquinas. 5. Aplicação baseada em modelos de aprendizado de máquina a diferentes áreas e problemas. Aprendizado de máquinas baseado em modelos: mudança de paradigma na compreensão e comunicação com sistemas complexos Introdução: No mundo atual, o aprendizado de máquinas (ML) tornou-se parte integrante de nossas vidas, desde ajudantes virtuais até carros não tripulados e desde diagnósticos médicos até previsões financeiras. No entanto, o rápido crescimento e a diversificação das aplicações ML também criaram um problema fundamental: a junção da matemática abstrata de uma técnica específica de ML com um problema real específico.
Hauptthemen des Buches: 1. Die Bedeutung des Studiums und des Verständnisses der Technologieentwicklung. 2. Die Notwendigkeit, ein persönliches Paradigma für die Wahrnehmung des technologischen Prozesses der Entwicklung des modernen Wissens als Grundlage für das Überleben der Menschheit und die Vereinigung der Menschen in einem kriegführenden Staat zu entwickeln. 3. Verwenden e modellbasiertes maschinelles rnen als Werkzeug, um das Verhalten komplexer Systeme zu verstehen und zu kommunizieren. 4. Trennung von Annahmen von der detaillierten Mathematik von Algorithmen, die das Verständnis und die Kommunikation des Verhaltens eines maschinellen rnsystems erleichtern. 5. Wenden e modellbasiertes maschinelles rnen auf verschiedene Bereiche und Probleme an. Modellbasiertes maschinelles rnen: Paradigmenwechsel im Verständnis und in der Kommunikation mit komplexen Systemen Einführung: In der heutigen Welt ist maschinelles rnen (ML) zu einem festen Bestandteil unseres bens geworden - vom virtuellen Assistenten bis zum selbstfahrenden Auto und von der medizinischen Diagnostik bis zur Finanzprognose. Das schnelle Wachstum und die Diversifizierung der ML-Anwendungen haben jedoch auch ein grundlegendes Problem geschaffen - die Verbindung der abstrakten Mathematik einer bestimmten ML-Technik mit einem bestimmten realen Problem.
''
Kitabın ana konuları: 1. Teknolojinin evrimini incelemek ve anlamanın önemi. 2. Modern bilginin gelişiminin teknolojik sürecinin, insanlığın hayatta kalmasının ve insanların savaşan bir durumda birleşmesinin temeli olarak algılanması için kişisel bir paradigma geliştirme ihtiyacı. 3. Model tabanlı makine öğrenimini karmaşık sistemlerin davranışlarını anlamak ve bilgilendirmek için bir araç olarak kullanmak. 4. Varsayımları algoritmaların detaylı matematiğinden ayırarak, bir makine öğrenme sisteminin davranışını anlamayı ve iletmeyi kolaylaştırır. 5. Model tabanlı makine öğrenimini farklı alanlara ve problemlere uygulama. Model tabanlı makine öğrenimi: karmaşık sistemleri anlama ve iletişim kurmada paradigma değişimi Giriş: Günümüz dünyasında, makine öğrenimi (ML), sanal asistanlardan kendi kendini süren arabalara ve tıbbi teşhislerden finansal tahminlere kadar hayatımızın ayrılmaz bir parçası haline geldi. Bununla birlikte, ML uygulamalarının hızlı büyümesi ve çeşitlendirilmesi de temel bir problem yaratmıştır - belirli bir ML tekniğinin soyut matematiğini belirli bir gerçek problemle bağlamak.
المواضيع الرئيسية للكتاب: 1. أهمية دراسة وفهم تطور التكنولوجيا. 2. الحاجة إلى وضع نموذج شخصي لتصور العملية التكنولوجية لتطور المعرفة الحديثة كأساس لبقاء البشرية وتوحيد الشعوب في دولة متحاربة. 3. استخدام التعلم الآلي القائم على النماذج كأداة لفهم وإعلام سلوك الأنظمة المعقدة. 4. فصل الافتراضات عن الرياضيات التفصيلية للخوارزميات، مما يسهل فهم وتوصيل سلوك نظام التعلم الآلي. 5. تطبيق التعلم الآلي القائم على النماذج على مجالات ومشاكل مختلفة. التعلم الآلي القائم على النماذج: نقلة نوعية في الفهم والتواصل مع الأنظمة المعقدة مقدمة: في عالم اليوم، أصبح التعلم الآلي (ML) جزءًا لا يتجزأ من حياتنا - من المساعدين الافتراضيين إلى السيارات ذاتية القيادة ومن التشخيص الطبي إلى التنبؤ المالي. ومع ذلك، فإن النمو السريع وتنويع تطبيقات ML قد خلق أيضًا مشكلة أساسية - ربط الرياضيات التجريدية لتقنية ML معينة بمشكلة حقيقية معينة.

You may also be interested in:

Machine Learning Infrastructure and Best Practices for Software Engineers: Take your machine learning software from a prototype to a fully fledged software system
Ultimate Machine Learning with Scikit-Learn: Unleash the Power of Scikit-Learn and Python to Build Cutting-Edge Predictive Modeling Applications and Unlock … Into Machine Learning (English Editi
Machine Learning Step-by-Step Guide To Implement Machine Learning Algorithms with Python
Machine Learning For Beginners A Comprehensive Beginners Guide To Machine Learning, No Experience Required!
Machine Learning in Python Hands on Machine Learning with Python Tools, Concepts and Techniques
Machine Learning with Python Advanced and Effective Strategies Using Machine Learning with Python Theories
Cracking The Machine Learning Interview 225 Machine Learning Interview Questions with Solutions
Smart Pedagogy of Game-based Learning (Advances in Game-Based Learning)
Mastering Classification Algorithms for Machine Learning: Learn how to apply Classification algorithms for effective Machine Learning solutions (English Edition)
Machine Learning With Python Programming 2023 A Beginners Guide The Definitive Guide to Mastering Machine Learning in Python and a Problem-Guide Solver to Creating Real-World Intelligent Systems
Machine Learning With Python Programming 2023 A Beginners Guide The Definitive Guide to Mastering Machine Learning in Python and a Problem-Guide Solver to Creating Real-World Intelligent Systems
Machine Learning in Microservices: Productionizing microservices architecture for machine learning solutions
Machine Learning in Trading: Step by step implementation of Machine Learning models
Deep Machine Learning Complete Tips and Tricks to Deep Machine Learning
Linear Algebra And Optimization With Applications To Machine Learning - Volume II Fundamentals of Optimization Theory with Applications to Machine Learning
Mastering ChatGPT and Google Colab for Machine Learning Automate AI Workflows and Fast-Track Your Machine Learning Tasks with the Power of ChatGPT, Google Colab, and Python
Python Machine Learning Discover the Essentials of Machine Learning, Data Analysis, Data Science, Data Mining and Artificial Intelligence Using Python Code with Python Tricks
Hands-on Supervised Learning with Python Learn How to Solve Machine Learning Problems with Supervised Learning Algorithms
Mastering Excel VBA and Machine Learning A Complete, Step-by-Step Guide To Learn and Master Excel VBA and Machine Learning From Scratch
Signal Processing and Machine Learning for Brain-Machine Interfaces
Python for Beginners A Step by Step Guide to Python Programming, Data Science, and Predictive Model. A Practical Introduction to Machine Learning with Python
Machine Learning with Python Advanced Guide in Machine Learning with Python
Advanced Decision Sciences Based on Deep Learning and Ensemble Learning Algorithms A Practical Approach Using Python
Automated Software Engineering: A Deep Learning-Based Approach (Learning and Analytics in Intelligent Systems Book 8)
Machine Learning with Python 3 in 1 Beginners Guide + Step by Step Methods + Advanced Methods and Strategies to Learn Machine Learning with Python
Machine Learning with Neural Networks An In-depth Visual Introduction with Python Make Your Own Neural Network in Python A Simple Guide on Machine Learning with Neural Networks
Facilitating the Integration of Learning: Five Research-Based Practices to Help College Students Connect Learning Across Disciplines and Lived Experience
Machine Learning with Python A Step-By-Step Guide to Learn and Master Python Machine Learning
Artificial Intelligence and Machine Learning Foundations Learning from experience, 2nd Edition
Bio-inspired Algorithms in Machine Learning and Deep Learning for Disease Detection
Learning Kernel Classifiers: Theory and Algorithms (Adaptive Computation and Machine Learning)
Machine Learning Master Supervised and Unsupervised Learning Algorithms with Real Examples
Artificial Intelligence and Machine Learning Foundations Learning from experience, 2nd Edition
Machine Learning and Deep Learning Techniques in Wireless and Mobile Networking Systems
Machine Learning with Python Cookbook Practical Solutions from Preprocessing to Deep Learning
Disease Prediction using Machine Learning, Deep Learning and Data Analytics
Learning TensorFlow.js Powerful Machine Learning in javascript
Federated Learning (Synthesis Lectures on Artificial Intelligence and Machine Learning)
Design of Intelligent Applications using Machine Learning and Deep Learning Techniques
Disease Prediction using Machine Learning, Deep Learning and Data Analytics