BOOKS - Deep Learning for Natural Language Processing: A Gentle Introduction
Deep Learning for Natural Language Processing: A Gentle Introduction - Mihai Surdeanu February 8, 2024 PDF  BOOKS
ECO~18 kg CO²

3 TON

Views
13614

Telegram
 
Deep Learning for Natural Language Processing: A Gentle Introduction
Author: Mihai Surdeanu
Year: February 8, 2024
Format: PDF
File size: PDF 97 MB
Language: English



Pay with Telegram STARS
Book Description: Deep Learning for Natural Language Processing A Gentle Introduction Author: Mihai Surdeanu February 8, 2024 Genre: Technology, Artificial Intelligence, Machine Learning, Natural Language Processing Overview: In today's technologydominated world, deep learning has become an essential tool for various fields, including natural language processing (NLP). However, the intricacies of building computational models that accurately represent linguistic structures can be daunting, especially for those without a strong background in mathematics and computer science. This book offers a comprehensive introduction to deep learning for NLP, making it accessible to those from humanities and social sciences backgrounds. Need to Study and Understand the Process of Technological Evolution: The rapid pace of technological advancements in the field of artificial intelligence (AI) has made it imperative for individuals to understand the process of technological evolution. As we move towards a more automated and interconnected world, it is crucial to appreciate the significance of deep learning in NLP. The ability to develop practical applications that cater to the needs of society depends on our capacity to grasp the underlying principles of this technology.
Deep arning for Natural Language Processing A Gentle Introduction Author: Mihai Surdeanu February 8, 2024 Жанр: технологии, искусственный интеллект, машинное обучение, обработка естественного языка Overview: В современном мире, основанном на технологиях, глубокое обучение стало важным инструментом для различных областей, включая обработку естественного языка (NLP). Однако сложности построения вычислительных моделей, точно представляющих лингвистические структуры, могут быть пугающими, особенно для тех, у кого нет сильного опыта в математике и информатике. Эта книга предлагает всеобъемлющее введение в глубокое обучение для НЛП, делая его доступным для людей из гуманитарных и социальных наук. Необходимость изучения и понимания процесса технологической эволюции: быстрые темпы технологического прогресса в области искусственного интеллекта (ИИ) сделали обязательным для людей понимание процесса технологической эволюции. По мере продвижения к более автоматизированному и взаимосвязанному миру крайне важно оценить значение глубокого обучения в НЛП. Способность разрабатывать практические приложения, удовлетворяющие потребности общества, зависит от нашей способности понять основополагающие принципы этой технологии.
Deep arning for Natural Language Processing A Gentle Introduction Author: Mihai Surdeanu Febrero 8, 2024 Género: tecnología, inteligencia artificial, aprendizaje automático, procesamiento de lenguaje natural Resumen: En el mundo actual basado en la tecnología, el aprendizaje profundo se ha convertido en una herramienta importante para diversos campos, incluyendo el procesamiento del lenguaje natural (NLP). n embargo, las dificultades para construir modelos computacionales que representen con precisión las estructuras lingüísticas pueden ser aterradoras, especialmente para aquellos que no tienen una experiencia fuerte en matemáticas e informática. Este libro ofrece una amplia introducción al aprendizaje profundo para la PNL, haciéndolo accesible a las personas de las humanidades y las ciencias sociales. La necesidad de estudiar y entender el proceso de evolución tecnológica: el rápido ritmo del progreso tecnológico en el campo de la inteligencia artificial (IA) ha hecho que sea obligatorio que las personas comprendan el proceso de evolución tecnológica. A medida que avanzamos hacia un mundo más automatizado e interconectado, es fundamental evaluar la importancia del aprendizaje profundo en la PNL. La capacidad de desarrollar aplicaciones prácticas que satisfagan las necesidades de la sociedad depende de nuestra capacidad para entender los principios fundamentales de esta tecnología.
''
Deep arning for Natural Language Processing A Gentle Introduction Author: Mihai Surdeanu February 8、2024ジャンル:技術、人工知能、機械学習、自然言語処理概要:今日の技術ベースの世界では、自然言語処理を含む様々なドメインのための重要なツールとなっていますP)。しかしながら、言語構造を正確に表現する計算モデルを構築することの複雑さは、特に数学や計算機科学において強いバックグラウンドを持っていない人々にとっては困難である可能性がある。本書では、NLPのためのディープラーニングを総合的に紹介し、人文社会科学の人々がアクセスできるようにしています。人工知能(AI)の分野における技術の急速な進歩は、人々が技術進化のプロセスを理解することを不可欠にしています。より自動化されたコネクテッドな世界に向かっていく中で、NLPにおけるディープラーニングの価値を理解することが重要です。社会のニーズを満たす実用的なアプリケーションを開発する能力は、この技術の根底にある原則を理解する能力に依存します。

You may also be interested in:

Enneagram: Visible Learning and Deep Learning Book for Highly Sensitive Person
Machine Learning and Deep Learning Techniques in Wireless and Mobile Networking Systems
Bio-inspired Algorithms in Machine Learning and Deep Learning for Disease Detection
Gendered Identities and Immigrant Language Learning (Critical Language and Literacy Studies Book 4)
Disease Prediction using Machine Learning, Deep Learning and Data Analytics
Design of Intelligent Applications using Machine Learning and Deep Learning Techniques
Disease Prediction using Machine Learning, Deep Learning and Data Analytics
Python AI Programming Navigating fundamentals of ML, Deep Learning, NLP, and reinforcement learning in practice
Python AI Programming Navigating fundamentals of ML, Deep Learning, NLP, and reinforcement learning in practice
Building Intelligent Systems Using Machine Learning and Deep Learning Security, Applications and Its Challenges
Building Intelligent Systems Using Machine Learning and Deep Learning Security, Applications and Its Challenges
Python AI Programming: Navigating fundamentals of ML, deep learning, NLP, and reinforcement learning in practice
Risk Modeling Practical Applications of Artificial Intelligence, Machine Learning, and Deep Learning
Second Language Learning Before Adulthood: Individual Differences in Children and Adolescents (Studies on Language Acquisition [SOLA], 65)
Language Teacher Education and Technology: Approaches and Practices (Advances in Digital Language Learning and Teaching)
Intensive Exposure Experiences in Second Language Learning (Second Language Acquisition, 65)
Language Learning and Forced Migration (Second Language Acquisition, 156)
Machine Learning with Python A Comprehensive Guide To Algorithms, Deep Learning Techniques, And Practical Applications
TensorFlow for Deep Learning From Linear Regression to Reinforcement Learning
Machine Learning - A Journey To Deep Learning With Exercises And Answers
Machine Learning and Deep Learning in Real-Time Applications
Learning TensorFlow A Guide to Building Deep Learning Systems
Machine Learning and Deep Learning in Neuroimaging Data Analysis
Machine Learning and Deep Learning in Neuroimaging Data Analysis
Learning Strategy Instruction in the Language Classroom: Issues and Implementation (Second Language Acquisition, 132) (Volume 136)
East Asian Perspectives on Silence in English Language Education (Psychology of Language Learning and Teaching, 6) (Volume 6)
Python Machine Learning The Ultimate Guide for Beginners to Machine Learning with Python, Programming and Deep Learning, Artificial Intelligence, Neural Networks, and Data Science
Default Loan Prediction Based On Customer Behavior Using Machine Learning And Deep Learning With Python, Second Edition
Generative AI with Python Harnessing The Power Of Machine Learning And Deep Learning To Build Creative And Intelligent Systems
Automated Software Engineering: A Deep Learning-Based Approach (Learning and Analytics in Intelligent Systems Book 8)
Advanced Decision Sciences Based on Deep Learning and Ensemble Learning Algorithms A Practical Approach Using Python
Learning Deep Learning Theory and Practice of Neural Networks, Computer Vision, NLP, and Transformers using TensorFlow
Language Learning Motivation in Japan (Second Language Acquisition, 71)
Debugging Machine Learning Models with Python: Develop high-performance, low-bias, and explainable machine learning and deep learning models
Machine Learning with Python Cookbook Practical Solutions from Preprocessing to Deep Learning, 2nd Edition (Final Release)
Data Scientist Pocket Guide Over 600 Concepts, Terminologies, and Processes of Machine Learning and Deep Learning Assembled
Machine Learning with Python Cookbook Practical Solutions from Preprocessing to Deep Learning, 2nd Edition (Final Release)
Programming Machine Learning From Coding to Deep Learning
Natural Gas Processing from Midstream to Downstream
Innovation in Methodology and Practice in Language Learning: Experiences and Proposals for University Language Centres (English, French and Italian Edition)