BOOKS - Mathematical Methods in Data Science
Mathematical Methods in Data Science - Jingli Ren January 25, 2023 PDF  BOOKS
ECO~26 kg CO²

2 TON

Views
49312

Telegram
 
Mathematical Methods in Data Science
Author: Jingli Ren
Year: January 25, 2023
Format: PDF
File size: PDF 8.9 MB
Language: English



Pay with Telegram STARS
Book Description: Mathematical Methods in Data Science Jingli Ren January 25, 2023 Jingli Ren Genre: Non-Fiction, Technology, Data Science Summary: In today's world, data science has become an integral part of our daily lives, from social media to healthcare, finance, and education. With the rapid evolution of technology, it is essential to understand the process of technological advancements and their impact on humanity. In his book "Mathematical Methods in Data Science [author name] presents a comprehensive guide to the mathematical tools used in data science, highlighting the need for a personal paradigm to perceive the technological process of developing modern knowledge as the basis for human survival. The book covers a broad range of mathematical tools used in data science, including calculus, linear algebra, optimization, network analysis, probability, and differential equations. The author introduces a new approach based on network analysis to integrate big data into the framework of ordinary and partial differential equations for data analysis and prediction. This approach makes the book accessible to researchers and graduate students in mathematics and data science, providing clear explanations of advanced mathematical concepts, especially data-driven differential equations. The book includes examples and problems arising in data science, making it an excellent resource for those looking to deepen their understanding of mathematical methods in data science. With the increasing use of data science in various fields, this book is a must-read for anyone looking to stay up-to-date with the latest developments in the field. Introduction: In the modern world, technology has become an integral part of our daily lives.
''
Jingli Renデータサイエンスの数学的方法25 1月2023 Jingli Renジャンル: ノンフィクション文学、テクノロジー、データサイエンスの概要:今日の世界では、データサイエンスはソーシャルメディアから健康、金融、教育まで、私たちの日常生活の不可欠な部分となっています。技術の急速な発展に伴い、技術の進歩と人類への影響のプロセスを理解することが重要です。著書「Mathematical Methods in Data Science」(著者の名前)では、データサイエンスに使用される数学的ツールの包括的なガイドを提供し、現代の知識を開発する技術プロセスを人間の生存の基礎として認識するための人格パラダイムの必要性を強調している。本書は、計算、線形代数、最適化、ネットワーク解析、確率、微分方程式など、データサイエンスで使用される幅広い数学的ツールを網羅しています。著者は、データ分析と予測のための通常および部分微分方程式にビッグデータを統合するための新しいネットワーク分析ベースのアプローチを紹介します。このアプローチは、数学やデータサイエンスの研究者や大学院生に、高度な数学的概念、特にデータ主導の微分方程式の明確な説明を提供することによってアクセス可能になります。この本には、データサイエンスに起因する例や問題が含まれており、データサイエンスにおける数学的手法の理解を深めたい人にとって優れたリソースとなっています。様々な分野でのデータサイエンスの利用が増加しているため、この本は、この分野の最新の開発を最新の状態に保ちたい人にとって必読です。はじめに:今日の世界では、テクノロジーは私たちの日常生活の不可欠な部分となっています。

You may also be interested in:

Statistical and Econometric Methods for Transportation Data Analysis
Advances in Business Statistics, Methods and Data Collection
Computational Methods for Data Analysis (De Gruyter Textbook)
Interaction Data Analytics Methods, Tools, and Applications
Interaction Data Analytics Methods, Tools, and Applications
Learn Python Programming A Beginners Crash Course on Python Language for Getting Started with Machine Learning, Data Science and Data Analytics (Artificial Intelligence Book 1)
PYTHON ARRAYS AND PYTHON NUMPY FOR BEGINNERS: MASTER DATA MANIPULATION EASILY AND UNLEASH THE POWER OF DATA SCIENCE WITH EASY-TO-FOLLOW TUTORIALS - 2 BOOKS IN 1
The Enterprise Big Data Lake Delivering on the Promise of Hadoop and Data Science in the Enterprise
Python for Data Science Data analysis and Deep learning with Python coding and programming
Machine Learning for Data Science Handbook: Data Mining and Knowledge Discovery Handbook
Data Analytics and Python Programming 2 Bundle Manuscript Beginners Guide to Learn Data Analytics, Predictive Analytics and Data Science with Python Programming
Microarray Data Analysis (Methods in Molecular Biology, 2401)
Data Mining Concepts, Models, Methods, and Algorithms, Third Edition
Multivariate Data Integration Using R Methods and Applications with the mixOmics Package
Quantitative Methods of Data Analysis for the Physical Sciences and Engineering
Advancement of Data Processing Methods for Artificial and Computing Intelligence
Advancement of Data Processing Methods for Artificial and Computing Intelligence
Einstein Constraints and Ricci Flow: A Geometrical Averaging of Initial Data Sets (Mathematical Physics Studies)
An Introduction to Spatial Data Science with GeoDa Volume 2 Clustering Spatial Data
An Introduction to Spatial Data Science with GeoDa, Volume 1 Exploring Spatial Data
An Introduction to Spatial Data Science with GeoDa Volume 2 Clustering Spatial Data
An Introduction to Spatial Data Science with GeoDa: Volume 1: Exploring Spatial Data
An Introduction to Spatial Data Science with GeoDa, Volume 1 Exploring Spatial Data
Deciphering Data Architectures Choosing Between a Modern Data Warehouse, Data Fabric, Data Lakehouse, and Data Mesh
Deciphering Data Architectures Choosing Between a Modern Data Warehouse, Data Fabric, Data Lakehouse, and Data Mesh
Approximation Methods in Science and Engineering
Global Well-posedness of High Dimensional Maxwell-dirac for Small Critical Data (Memoirs of the American Mathematical Society)
Python for Data Science Master Data Analysis from Scratch, with Business Analytics Tools and Step-by-Step techniques for Beginners. The Future of Machine Learning & Applied Artificial Intelligence
Research Methods for Reading Digital Data in the Digital Humanities (Research Methods for the Arts and Humanities)
Python Data Science A Step-By-Step Guide to Data Analysis
Think Like a Data Scientist Tackle the data science process step-by-step
A Beginner|s Guide to Constructing the Universe Mathematical Archetypes of Nature, Art, and Science
Serendipity Science: An Emerging Field and its Methods
Basic Science Methods for Clinical Researchers
Guide to Methods for Students of Political Science
Numerical Methods in Engineering and Science C, C++, MATLAB
Statistical Methods for Machine Learning Discover how to Transform Data into Knowledge with Python
Java Methods Object-Oriented Programming and Data Structures, 4th Edition
Coding with Python The Ultimate Guide For Data Science, a Smart Way to Program With Python, Understand Data Analytics and Deep Learning Faster Computer Programming for Beginners (Book Python 3)
Soft Computing in Data Science: 7th International Conference, SCDS 2023, Virtual Event, January 24-25, 2023, Proceedings (Communications in Computer and Information Science Book 1771)