BOOKS - Machine Learning for Materials Discovery: Numerical Recipes and Practical App...
Machine Learning for Materials Discovery: Numerical Recipes and Practical Applications (Machine Intelligence for Materials Science) - N. M. Anoop Krishnan May 6, 2024 PDF  BOOKS
ECO~24 kg CO²

2 TON

Views
50988

Telegram
 
Machine Learning for Materials Discovery: Numerical Recipes and Practical Applications (Machine Intelligence for Materials Science)
Author: N. M. Anoop Krishnan
Year: May 6, 2024
Format: PDF
File size: PDF 12 MB
Language: English



Pay with Telegram STARS
The plot of Machine Learning for Materials Discovery Numerical Recipes and Practical Applications Machine Intelligence for Materials Science revolves around the evolution of technology and its impact on human society, particularly in the context of materials science. As technology continues to advance at an unprecedented pace, it is essential for us to understand and adapt to these changes in order to survive and thrive. The book takes a holistic approach to machine learning, covering a wide range of topics from simple regression to advanced optimization methods, all with the goal of applying these techniques to materials discovery and modeling. The story begins with an introduction to the fundamentals of machine learning, providing readers with a solid foundation for understanding the more complex concepts that follow. The author emphasizes the importance of grasping these principles, as they form the basis for the development of modern knowledge and the survival of humanity. As the reader progresses through the book, they will learn how to apply these techniques in practical applications, including materials discovery and optimization. One of the unique features of this book is its hands-on approach, where each method presented is accompanied by code that can be implemented in open-source platforms such as Python.
Сюжет Machine arning for Materials Discovery Numerical Recipes and Practical Applications Machine Intelligence for Materials Science вращается вокруг эволюции технологии и ее влияния на человеческое общество, особенно в контексте материаловедения. Поскольку технологии продолжают развиваться беспрецедентными темпами, для нас важно понимать и адаптироваться к этим изменениям, чтобы выжить и процветать. Книга использует целостный подход к машинному обучению, охватывая широкий спектр тем от простой регрессии до передовых методов оптимизации, и все это с целью применения этих методов к обнаружению и моделированию материалов. История начинается с введения в основы машинного обучения, предоставляя читателям прочную основу для понимания более сложных концепций, которые следуют далее. Автор подчеркивает важность осознания этих принципов, поскольку они составляют основу для развития современных знаний и выживания человечества. По мере прохождения книги читатель узнает, как применять эти методы в практических приложениях, включая обнаружение и оптимизацию материалов. Одной из уникальных особенностей этой книги является её практический подход, где каждый представленный метод сопровождается кодом, который может быть реализован в платформах с открытым исходным кодом, таких как Python.
L'intrigue Machine arning for Materials Discovery Numerical Recipes and Practical Applications Machine Intelligence for Materials Science tourne autour de l'évolution de la technologie et de son impact sur la société humaine, en particulier dans le contexte de la science des matériaux. Alors que la technologie continue d'évoluer à un rythme sans précédent, il est important pour nous de comprendre et de nous adapter à ces changements pour survivre et prospérer. livre adopte une approche holistique de l'apprentissage automatique, couvrant un large éventail de sujets allant de la simple régression aux techniques d'optimisation avancées, et tout cela dans le but d'appliquer ces techniques à la détection et à la modélisation des matériaux. L'histoire commence par une introduction aux bases de l'apprentissage automatique, offrant aux lecteurs une base solide pour comprendre les concepts plus complexes qui suivent. L'auteur souligne l'importance de prendre conscience de ces principes, car ils constituent la base du développement des connaissances modernes et de la survie de l'humanité. Au fur et à mesure que le livre passe, le lecteur apprend comment appliquer ces techniques dans des applications pratiques, y compris la détection et l'optimisation des matériaux. L'une des caractéristiques uniques de ce livre est son approche pratique, où chaque méthode présentée est accompagnée d'un code qui peut être mis en œuvre sur des plates-formes open source telles que Python.
Historia Máquina Arning para Materiales Descubrimiento Numérico Recipientes y Aplicaciones Prácticas La Inteligencia de la Máquina para la Ciencia Material gira en torno a la evolución de la tecnología y su impacto en la sociedad humana, especialmente en el contexto de la ciencia de los materiales. A medida que la tecnología continúa evolucionando a un ritmo sin precedentes, es importante que comprendamos y nos adaptemos a estos cambios para sobrevivir y prosperar. libro adopta un enfoque holístico del aprendizaje automático, abarcando una amplia gama de temas que van desde la simple regresión hasta las técnicas avanzadas de optimización, y todo ello con el objetivo de aplicar estas técnicas a la detección y modelado de materiales. La historia comienza con la introducción en los fundamentos del aprendizaje automático, proporcionando a los lectores una base sólida para comprender los conceptos más complejos que siguen. autor subraya la importancia de tomar conciencia de estos principios, ya que constituyen la base para el desarrollo del conocimiento moderno y la supervivencia de la humanidad. A medida que el libro pasa, el lector aprende a aplicar estas técnicas en aplicaciones prácticas, incluyendo la detección y optimización de materiales. Una de las características únicas de este libro es su enfoque práctico, donde cada método presentado se acompaña de un código que se puede implementar en plataformas de código abierto como Python.
Plot Machine arning for Materials Discovery Numerical Recipes and Practical Applications Machine Intelligence for Materials Science dreht sich um die Evolution der Technologie und ihre Auswirkungen auf die menschliche Gesellschaft, insbesondere im Kontext der Materialwissenschaft. Da sich die Technologie in einem beispiellosen Tempo weiterentwickelt, ist es für uns wichtig, diese Veränderungen zu verstehen und uns daran anzupassen, um zu überleben und zu gedeihen. Das Buch verfolgt einen ganzheitlichen Ansatz für maschinelles rnen und deckt ein breites Themenspektrum von einfacher Regression bis hin zu fortgeschrittenen Optimierungstechniken ab, um diese Methoden auf die Materialdetektion und -modellierung anzuwenden. Die Geschichte beginnt mit einer Einführung in die Grundlagen des maschinellen rnens und bietet den sern eine solide Grundlage, um die komplexeren Konzepte zu verstehen, die folgen. Der Autor betont die Bedeutung des Bewusstseins für diese Prinzipien, da sie die Grundlage für die Entwicklung des modernen Wissens und das Überleben der Menschheit bilden. Im Laufe des Buches lernt der ser, wie er diese Techniken in praktischen Anwendungen anwenden kann, einschließlich der Erkennung und Optimierung von Materialien. Eines der einzigartigen Merkmale dieses Buches ist sein praktischer Ansatz, bei dem jede vorgestellte Methode von Code begleitet wird, der in Open-Source-Plattformen wie Python implementiert werden kann.
''
Malzeme Keşfi için Makine Öğrenimi Sayısal Tarifler ve Pratik Uygulamalar Malzeme Bilimi için Makine Zekası, teknolojinin evrimi ve özellikle malzeme bilimi bağlamında insan toplumu üzerindeki etkisi etrafında döner. Teknoloji benzeri görülmemiş bir hızda ilerlemeye devam ettikçe, hayatta kalmak ve gelişmek için bu değişiklikleri anlamak ve bunlara uyum sağlamak bizim için önemlidir. Kitap, basit regresyondan gelişmiş optimizasyon tekniklerine kadar çok çeşitli konuları kapsayan makine öğrenimine bütünsel bir yaklaşım getiriyor ve hepsi de bu teknikleri malzeme keşfi ve modellemesine uygulamak amacıyla. Hikaye, makine öğreniminin temellerine bir giriş ile başlar ve okuyuculara, takip eden daha karmaşık kavramları anlamak için sağlam bir temel sağlar. Yazar, bu ilkelerin farkındalığının önemini vurgulamaktadır, çünkü bunlar modern bilginin gelişmesi ve insanlığın hayatta kalması için temel oluşturmaktadır. Kitap ilerledikçe, okuyucu bu teknikleri malzeme keşfi ve optimizasyon da dahil olmak üzere pratik uygulamalara nasıl uygulayacağını öğrenir. Bu kitabın benzersiz özelliklerinden biri, sunulan her yöntemin Python gibi açık kaynaklı platformlarda uygulanabilen kodla eşlik ettiği pratik yaklaşımıdır.
التعلم الآلي لاكتشاف المواد الوصفات الرقمية والتطبيقات العملية الذكاء الآلي لعلوم المواد يدور حول تطور التكنولوجيا وتأثيرها على المجتمع البشري، خاصة في سياق علم المواد. مع استمرار تقدم التكنولوجيا بوتيرة غير مسبوقة، من المهم بالنسبة لنا أن نفهم هذه التغييرات ونتكيف معها من أجل البقاء والازدهار. يتخذ الكتاب نهجًا شاملاً للتعلم الآلي، حيث يغطي مجموعة واسعة من الموضوعات من الانحدار البسيط إلى تقنيات التحسين المتقدمة، وكل ذلك بهدف تطبيق هذه التقنيات على اكتشاف المواد والنمذجة. تبدأ القصة بمقدمة لأساسيات التعلم الآلي، مما يوفر للقراء أساسًا صلبًا لفهم المفاهيم الأكثر تعقيدًا التي تتبعها. ويشدد المؤلف على أهمية الوعي بهذه المبادئ لأنها تشكل الأساس لتطوير المعرفة الحديثة وبقاء البشرية. مع تقدم الكتاب، يتعلم القارئ كيفية تطبيق هذه التقنيات على التطبيقات العملية، بما في ذلك اكتشاف المواد وتحسينها. إحدى السمات الفريدة لهذا الكتاب هي نهجه العملي، حيث تصاحب كل طريقة مقدمة رمز يمكن تنفيذه في منصات مفتوحة المصدر مثل Python.

You may also be interested in:

Mastering Classification Algorithms for Machine Learning: Learn how to apply Classification algorithms for effective Machine Learning solutions (English Edition)
Theory, Modeling and Numerical Simulation of Multi-Physics Materials Behavior (Solid State Phenomena)
Machine Learning With Python Programming 2023 A Beginners Guide The Definitive Guide to Mastering Machine Learning in Python and a Problem-Guide Solver to Creating Real-World Intelligent Systems
Machine Learning With Python Programming 2023 A Beginners Guide The Definitive Guide to Mastering Machine Learning in Python and a Problem-Guide Solver to Creating Real-World Intelligent Systems
Deep Machine Learning Complete Tips and Tricks to Deep Machine Learning
Machine Learning in Trading: Step by step implementation of Machine Learning models
Machine Learning in Microservices: Productionizing microservices architecture for machine learning solutions
Lessons in Scientific Computing Numerical Mathematics, Computer Technology, and Scientific Discovery
Linear Algebra And Optimization With Applications To Machine Learning - Volume II Fundamentals of Optimization Theory with Applications to Machine Learning
Mastering ChatGPT and Google Colab for Machine Learning Automate AI Workflows and Fast-Track Your Machine Learning Tasks with the Power of ChatGPT, Google Colab, and Python
Deep Learning for the Life Sciences Applying Deep Learning to Genomics, Microscopy, Drug Discovery, and More First Edition
Python Machine Learning Discover the Essentials of Machine Learning, Data Analysis, Data Science, Data Mining and Artificial Intelligence Using Python Code with Python Tricks
Hands-on Supervised Learning with Python Learn How to Solve Machine Learning Problems with Supervised Learning Algorithms
Deep Learning for the Life Sciences Applying Deep Learning to Genomics, Microscopy, Drug Discovery, and More
Mastering Excel VBA and Machine Learning A Complete, Step-by-Step Guide To Learn and Master Excel VBA and Machine Learning From Scratch
Signal Processing and Machine Learning for Brain-Machine Interfaces
Machine Learning with Python Advanced Guide in Machine Learning with Python
Machine Learning with Python 3 in 1 Beginners Guide + Step by Step Methods + Advanced Methods and Strategies to Learn Machine Learning with Python
Machine Learning with Neural Networks An In-depth Visual Introduction with Python Make Your Own Neural Network in Python A Simple Guide on Machine Learning with Neural Networks
Machine Learning with Python A Step-By-Step Guide to Learn and Master Python Machine Learning
Artificial Intelligence and Machine Learning Foundations Learning from experience, 2nd Edition
Machine Learning Master Supervised and Unsupervised Learning Algorithms with Real Examples
Bio-inspired Algorithms in Machine Learning and Deep Learning for Disease Detection
Machine Learning and Deep Learning Techniques in Wireless and Mobile Networking Systems
Artificial Intelligence and Machine Learning Foundations Learning from experience, 2nd Edition
Machine Learning with Python Cookbook Practical Solutions from Preprocessing to Deep Learning
Learning Kernel Classifiers: Theory and Algorithms (Adaptive Computation and Machine Learning)
Federated Learning (Synthesis Lectures on Artificial Intelligence and Machine Learning)
Learning TensorFlow.js Powerful Machine Learning in javascript
Disease Prediction using Machine Learning, Deep Learning and Data Analytics
Disease Prediction using Machine Learning, Deep Learning and Data Analytics
Design of Intelligent Applications using Machine Learning and Deep Learning Techniques
Risk Modeling Practical Applications of Artificial Intelligence, Machine Learning, and Deep Learning
Building Intelligent Systems Using Machine Learning and Deep Learning Security, Applications and Its Challenges
Building Intelligent Systems Using Machine Learning and Deep Learning Security, Applications and Its Challenges
Elements of Causal Inference: Foundations and Learning Algorithms (Adaptive Computation and Machine Learning series)
Adversarial Machine Learning: Attack Surfaces, Defence Mechanisms, Learning Theories in Artificial Intelligence
Machine Learning: Master Supervised and Unsupervised Learning Algorithms with Real Examples (English Edition)
Machine Learning with Python A Comprehensive Guide To Algorithms, Deep Learning Techniques, And Practical Applications
Hands-On Unsupervised Learning Using Python: How to Build Applied Machine Learning Solutions from Unlabeled Data