BOOKS - DevOps for Data Science
DevOps for Data Science - Alex K Gold  PDF  BOOKS
ECO~22 kg CO²

3 TON

Views
79253

Telegram
 
DevOps for Data Science
Author: Alex K Gold
Format: PDF
File size: PDF 17 MB
Language: English



Pay with Telegram STARS
The book highlights the challenges faced by data scientists in collaborating with or delivering their work to the people and systems that matter, and how the principles and tools of DevOps can be applied to create and deliver production-grade data science projects in Python and R. The book is divided into three sections: 1. Building Data Science Projects that Deploy to Production with No Frills or Fuss: This section explores how to build data science projects that can be reliably deployed to production without any hassles or complications. 2. Rudiments of Administering a Server: This section covers the basics of server administration, including Linux application and network administration, to provide a solid foundation for deploying data science projects. 3.
В книге освещаются проблемы, с которыми сталкиваются специалисты по анализу данных при сотрудничестве или предоставлении своей работы людям и системам, которые имеют значение, а также то, как принципы и инструменты DevOps могут применяться для создания и предоставления проектов по анализу данных производственного уровня на Python и R. Книга разделена на три раздела: 1. Построение проектов Data Science, которые развертываются в производство без излишеств и суеты: в этом разделе рассматривается, как создавать проекты Data Science, которые могут быть надежно развернуты в производство без каких-либо проблем или осложнений. 2. Основы администрирования сервера: В этом разделе рассматриваются основы администрирования серверов, включая администрирование приложений и сетей Linux, что обеспечивает надежную основу для развертывания проектов в области науки о данных. 3.
livre met en lumière les défis auxquels sont confrontés les analystes de données pour collaborer ou fournir leur travail aux personnes et aux systèmes qui comptent, ainsi que la façon dont les principes et les outils DevOps peuvent être appliqués pour créer et fournir des projets d'analyse de données de niveau de production sur Python et R. livre est divisé en trois sections : 1. Construire des projets Data Science qui se déploient dans la production sans excès ni agitation : cette section examine comment créer des projets Data Science qui peuvent être déployés en toute sécurité dans la production sans aucun problème ou complication. 2. Bases de l'administration des serveurs : Cette section traite des bases de l'administration des serveurs, y compris l'administration des applications et des réseaux Linux, ce qui fournit une base solide pour le déploiement de projets de science des données. 3.
libro destaca los desafíos que enfrentan los analistas de datos al colaborar o proporcionar su trabajo a las personas y sistemas que importan, y cómo los principios y herramientas de DevOps pueden aplicarse para crear y proporcionar proyectos de análisis de datos de nivel de producción en Python y R. libro se divide en tres secciones: 1. Construcción de proyectos de Data Science que se despliegan en la producción sin excesos ni vanidades: esta sección aborda cómo crear proyectos de Data Science que puedan desplegarse de forma fiable en la producción sin ningún problema o complicación. 2. Fundamentos de la administración de servidores: Esta sección aborda los fundamentos de la administración de servidores, incluida la administración de aplicaciones y redes Linux, lo que proporciona una base sólida para implementar proyectos de ciencia de datos. 3.
O livro descreve os problemas que os especialistas em análise de dados enfrentam ao cooperar ou fornecer o seu trabalho às pessoas e sistemas que importam, e como os princípios e ferramentas de DevOps podem ser aplicados para criar e fornecer projetos de análise de dados de nível de produção em Python e R. O livro é dividido em três seções: 1. Construção de projetos Data Science que são implantados sem excesso de produção: esta seção aborda como criar projetos Data Science que podem ser implantados de forma segura para a produção sem problemas ou complicações. 2. Base de administração do servidor: Esta seção aborda os fundamentos da administração dos servidores, incluindo a administração de aplicativos e redes Linux, fornecendo uma base confiável para a implantação de projetos de ciência de dados. 3.
Nel libro vengono illustrati i problemi che gli esperti di analisi dei dati affrontano quando collaborano o forniscono il proprio lavoro alle persone e ai sistemi che contano, nonché come i principi e gli strumenti del sistema possono essere utilizzati per creare e fornire progetti di analisi dei dati di livello produttivo su Python e R. Il libro è suddiviso in tre sezioni: 1. Creazione di progetti Data Science che vengono implementati in produzione senza problemi o complicazioni, in questa sezione vengono descritti come creare progetti Data Science che possono essere implementati in modo affidabile senza problemi o complicazioni. 2. Base per l'amministrazione del server: questa sezione esamina le basi dell'amministrazione dei server, inclusa l'amministrazione delle applicazioni e delle reti Linux, fornendo una base affidabile per l'implementazione dei progetti di scienza dei dati. 3.
Das Buch beleuchtet die Herausforderungen, mit denen Datenwissenschaftler konfrontiert sind, wenn sie mit Menschen und Systemen zusammenarbeiten oder ihre Arbeit zur Verfügung stellen, die wichtig sind, und wie DevOps-Prinzipien und -Tools angewendet werden können, um Datenanalyseprojekte auf Produktionsebene in Python und R zu erstellen und bereitzustellen. Das Buch ist in drei Abschnitte unterteilt: 1. Aufbau von Data-Science-Projekten, die ohne Schnickschnack und Hektik in die Produktion eingeführt werden: In diesem Abschnitt wird untersucht, wie Data-Science-Projekte erstellt werden können, die ohne Probleme oder Komplikationen zuverlässig in die Produktion eingeführt werden können. 2. Grundlagen der Serververwaltung: Dieser Abschnitt behandelt die Grundlagen der Serververwaltung, einschließlich der Verwaltung von Linux-Anwendungen und -Netzwerken, und bietet eine solide Grundlage für die Bereitstellung von Data-Science-Projekten. 3.
Książka podkreśla wyzwania, przed którymi stoją naukowcy zajmujący się danymi, współpracując lub dostarczając swoją pracę osobom i systemom, które mają znaczenie, oraz sposób stosowania zasad i narzędzi DevOp do tworzenia i dostarczania projektów analizy danych na poziomie produkcji w Pythonie i R. Książka podzielona jest na trzy sekcje: 1. Budowanie danych Projekty naukowe, które wdrażają do produkcji bez fusów lub zamieszania: W tej sekcji analizuje się, jak budować projekty Data Science, które można niezawodnie wdrożyć do produkcji bez żadnych problemów i komplikacji. 2. Podstawy administrowania serwerem: Ta sekcja obejmuje podstawy administracji serwera, w tym administrowanie aplikacjami i sieciami Linuksa, która stanowi solidny fundament dla wdrażania projektów w zakresie danych naukowych. 3.
הספר מדגיש את האתגרים שמדעני נתונים מתמודדים איתם כאשר משתפים פעולה או מספקים את עבודתם לאנשים ולמערכות חשובות, וכיצד ניתן ליישם עקרונות וכלים של DevOp כדי ליצור ולספק פרוייקטים לניתוח נתונים ברמת הייצור בפייתון ור 'הספר מחולק לשלושה חלקים: 1. בניית פרוייקטים של מדע הנתונים המתפרסמים לייצור ללא קישוטים או מהומה: סעיף זה בוחן כיצד לבנות פרוייקטים של מדע הנתונים 2. Server Administration Basics: סעיף זה מכסה את יסודות ניהול השרתים, כולל ניהול יישומי לינוקס ורשתות, המספקים בסיס מוצק לפריסת פרויקטי מדע נתונים. 3.''
Kitap, veri bilimcilerin işbirliği yaparken veya çalışmalarını önemli insanlara ve sistemlere sunarken karşılaştıkları zorlukları ve Python ve R'de üretim düzeyinde veri analizi projeleri oluşturmak ve sağlamak için DevOps ilkelerinin ve araçlarının nasıl uygulanabileceğini vurgulamaktadır. Kitap üç bölüme ayrılmıştır: 1. Fırfırlar veya yaygara olmadan üretime dağıtılan Bina Veri Bilimi projeleri: Bu bölüm, herhangi bir sorun veya komplikasyon olmadan üretime güvenilir bir şekilde dağıtılabilen Veri Bilimi projelerinin nasıl oluşturulacağına bakar. 2. Sunucu Yönetimi Temelleri: Bu bölüm, veri bilimi projelerini dağıtmak için sağlam bir temel sağlayan Linux uygulamalarının ve ağlarının yönetimi de dahil olmak üzere sunucu yönetiminin temellerini kapsar. 3.
يسلط الكتاب الضوء على التحديات التي يواجهها علماء البيانات عند التعاون أو تقديم عملهم للأشخاص والأنظمة المهمة، وكيف يمكن تطبيق مبادئ وأدوات DevOps لإنشاء وتوفير مشاريع تحليل البيانات على مستوى الإنتاج في Python و R. ينقسم الكتاب إلى ثلاثة أقسام: 1. مشاريع بناء علوم البيانات التي تنتشر في الإنتاج دون رتوش أو ضجة: يبحث هذا القسم في كيفية بناء مشاريع علوم البيانات التي يمكن نشرها بشكل موثوق في الإنتاج دون أي مشاكل أو مضاعفات. 2. أساسيات إدارة الخواديم: يغطي هذا القسم أساسيات إدارة الخواديم، بما في ذلك إدارة تطبيقات وشبكات لينكس، التي توفر أساسًا متينًا لنشر مشاريع علوم البيانات. 3.
本書重點介紹了數據分析人員在合作或向重要人員和系統提供工作時面臨的挑戰,以及如何應用DevOps的原則和工具來創建和提供Python和R上的生產級數據分析項目。本書分為三個部分:1。構建數據科學項目,這些項目部署到生產中,沒有過分和繁瑣:本節探討如何創建數據科學項目,這些項目可以可靠地部署到生產中,沒有任何問題或復雜性。2.服務器管理基礎:本節探討服務器管理基礎,包括Linux應用程序和網絡管理,為部署數據科學項目提供了堅實的基礎。3.

You may also be interested in:

Frame Theory in Data Science (Advances in Science, Technology and Innovation)
Econometric Python Harnessing Data Science for Economic Analysis The Science of Pythonomics in 2024
Econometric Python: Harnessing Data Science for Economic Analysis: The Science of Pythonomics in 2024
Python for Beginners Start Right Now to Learn Computer Programming with the Best Crash Course. Improve your Skills with Machine Learning, Data Analysis and Data Science
The Definitive Guide to Azure Data Engineering: Modern ELT, DevOps, and Analytics on the Azure Cloud Platform
Graph Data Science with Python and Neo4j: Hands-on Projects on Python and Neo4j Integration for Data Visualization and Analysis Using Graph Data … Enterprise Strategies (English Edition)
Ultimate Parallel and Distributed Computing with Julia For Data Science Excel in Data Analysis, Statistical Modeling and Machine Learning by Leveraging MLBase.jl and MLJ.jl to Optimize Workflows
Ultimate Parallel and Distributed Computing with Julia For Data Science Excel in Data Analysis, Statistical Modeling and Machine Learning by Leveraging MLBase.jl and MLJ.jl to Optimize Workflows
Hands-on DevOps with Linux Build and Deploy DevOps Pipelines Using Linux Commands, Terraform, Docker, Vagrant, and Kubernetes
Mastering Shell for DevOps Automate, streamline, and secure DevOps workflows with modern shell scripting
Mastering Shell for DevOps Automate, streamline, and secure DevOps workflows with modern shell scripting
Ultimate Parallel and Distributed Computing with Julia For Data Science: Excel in Data Analysis, Statistical Modeling and Machine Learning by … to optimize workflows (English Edition)
Geospatial Data Science: A Hands-On Approach for Building Geospatial Applications Using Linked Data Technologies (ACM Books)
Python Machine Learning Discover the Essentials of Machine Learning, Data Analysis, Data Science, Data Mining and Artificial Intelligence Using Python Code with Python Tricks
Practical Data Science with Hadoop and Spark: Designing and Building Effective Analytics at Scale (Addison-Wesley Data and Analytics)
Artificial Intelligence For Business How Your Company Can Make More Profit with Machine Learning, Data Science, Big Data, and Deep Learning
Python Data Science How to Learn Step by Step Programming, Data Analytics, and Coding Essentials Tools
Data Science on the Google Cloud Platform Implementing End-to-End Real-time Data Pipelines from ingest to machine learning
Transactions on Large-Scale Data- and Knowledge-Centered Systems LIV: Special Issue on Data Management - Principles, Technologies, and Applications (Lecture Notes in Computer Science Book 14160)
SQL for Data Analysis: A Middle-Level Guide to Integrating SQL with Data Science Tools
SQL for Data Analysis A Middle-Level Guide to Integrating SQL with Data Science Tools
SQL for Data Analysis A Middle-Level Guide to Integrating SQL with Data Science Tools
PYTHON ARRAYS AND PYTHON NUMPY FOR BEGINNERS: MASTER DATA MANIPULATION EASILY AND UNLEASH THE POWER OF DATA SCIENCE WITH EASY-TO-FOLLOW TUTORIALS - 2 BOOKS IN 1
Learn Python Programming A Beginners Crash Course on Python Language for Getting Started with Machine Learning, Data Science and Data Analytics (Artificial Intelligence Book 1)
Machine Learning for Data Science Handbook: Data Mining and Knowledge Discovery Handbook
The Enterprise Big Data Lake Delivering on the Promise of Hadoop and Data Science in the Enterprise
Python for Data Science Data analysis and Deep learning with Python coding and programming
Data Analytics and Python Programming 2 Bundle Manuscript Beginners Guide to Learn Data Analytics, Predictive Analytics and Data Science with Python Programming
An Introduction to Spatial Data Science with GeoDa: Volume 1: Exploring Spatial Data
An Introduction to Spatial Data Science with GeoDa Volume 2 Clustering Spatial Data
An Introduction to Spatial Data Science with GeoDa, Volume 1 Exploring Spatial Data
An Introduction to Spatial Data Science with GeoDa Volume 2 Clustering Spatial Data
An Introduction to Spatial Data Science with GeoDa, Volume 1 Exploring Spatial Data
Deciphering Data Architectures Choosing Between a Modern Data Warehouse, Data Fabric, Data Lakehouse, and Data Mesh
Deciphering Data Architectures Choosing Between a Modern Data Warehouse, Data Fabric, Data Lakehouse, and Data Mesh
Hands-on Azure DevOps CICD Implementation for Mobile, Hybrid, and Web Applications Using Azure DevOps and Microsoft Azure
DevOps and Microservices Handbook Non-Programmer|s Guide to DevOps and Microservices
DevOps The Ultimate Beginners Guide to Learn DevOps Step-by-Step
Python for Data Science Master Data Analysis from Scratch, with Business Analytics Tools and Step-by-Step techniques for Beginners. The Future of Machine Learning & Applied Artificial Intelligence
Think Like a Data Scientist Tackle the data science process step-by-step