BOOKS - PROGRAMMING - Robust Machine Learning Distributed Methods for Safe AI
Robust Machine Learning Distributed Methods for Safe AI - Rachid Guerraoui, Nirupam Gupta, Rafael Pinot 2024 PDF | EPUB Springer BOOKS PROGRAMMING
ECO~12 kg CO²

1 TON

Views
72534

Telegram
 
Robust Machine Learning Distributed Methods for Safe AI
Author: Rachid Guerraoui, Nirupam Gupta, Rafael Pinot
Year: 2024
Pages: 180
Format: PDF | EPUB
File size: 10.1 MB
Language: ENG



Pay with Telegram STARS
Book Description: Robust Machine Learning Distributed Methods for Safe AI Rachid Guerraoui, Nirupam Gupta, Rafael Pinot 2024 180 Summary: In today's world, machine learning algorithms are increasingly being used in various industries, from healthcare to finance, and their popularity continues to grow. However, as these algorithms become more widespread, the need for robustness and security becomes even more pressing. Robust Machine Learning Distributed Methods for Safe AI addresses this issue by providing a comprehensive guide to developing secure and reliable machine learning algorithms that can withstand threats such as hardware and software bugs, data poisoning, and malicious players. The book begins by introducing the concept of robustness in modern machine learning and its importance in ensuring the survival of humanity in the face of technological advancements. It then delves into the challenges of distributed machine learning, including the potential risks associated with distributing algorithms across multiple machines. The author explains how these risks can compromise the learning process and lead to undesirable outcomes, making it essential to understand the process of technology evolution and its impact on society.
Надежные распределенные методы машинного обучения для безопасного ИИ Рашид Геррауи, Нирупам Гупта, Рафаэль Пино 2024 180 Резюме: В современном мире алгоритмы машинного обучения все чаще используются в различных отраслях, от здравоохранения до финансов, и их популярность продолжает расти. Однако по мере распространения этих алгоритмов потребность в надежности и безопасности становится еще более насущной. Robust Machine arning Distributed Methods for Safe AI решает эту проблему, предоставляя исчерпывающее руководство по разработке безопасных и надежных алгоритмов машинного обучения, способных противостоять таким угрозам, как аппаратные и программные ошибки, отравление данных и вредоносные проигрыватели. Книга начинается с введения концепции устойчивости в современном машинном обучении и её важности в обеспечении выживания человечества перед лицом технологических достижений. Затем он углубляется в проблемы распределенного машинного обучения, включая потенциальные риски, связанные с распределением алгоритмов по нескольким машинам. Автор объясняет, как эти риски могут поставить под угрозу процесс обучения и привести к нежелательным результатам, что делает необходимым понимание процесса эволюции технологий и его влияния на общество.
Robustos métodos distribuidos de aprendizaje automático para una IA segura Rashid Gerraoui, Nirupam Gupta, Rafael Pino 2024 180 Resumen: En el mundo actual, los algoritmos de aprendizaje automático se utilizan cada vez más en diversas industrias, desde la salud hasta las finanzas, y su popularidad sigue creciendo. n embargo, a medida que estos algoritmos se extienden, la necesidad de confiabilidad y seguridad se vuelve aún más urgente. Robust Machine arning Distributed Methods for Safe AI resuelve este problema proporcionando una guía exhaustiva para desarrollar algoritmos de aprendizaje automático seguros y confiables capaces de enfrentar amenazas como errores de hardware y software, envenenamiento de datos y reproductores maliciosos. libro comienza introduciendo el concepto de sostenibilidad en el aprendizaje automático moderno y su importancia para garantizar la supervivencia de la humanidad frente a los avances tecnológicos. Luego se profundiza en los problemas del aprendizaje automático distribuido, incluyendo los riesgos potenciales asociados con la distribución de algoritmos a través de varias máquinas. autor explica cómo estos riesgos pueden comprometer el proceso de aprendizaje y conducir a resultados no deseados, lo que hace necesario comprender el proceso de evolución de la tecnología y su impacto en la sociedad.
''
Secure AI Rashid Gerraoui、 Nirupam Gupta、 Rafael Pino 2024 180の堅牢な分散型機械学習方法の概要:今日の世界では、機械学習アルゴリズムは医療から金融まで幅広い分野で使用されており、その人気は高まっています。しかし、これらのアルゴリズムが増大するにつれて、信頼性とセキュリティの必要性はさらに急務になります。安全なAIのための強力な機械学習分散法は、ハードウェアやソフトウェアのバグ、データ中毒、悪意のあるプレーヤーなどの脅威に耐える安全で信頼性の高い機械学習アルゴリズムを開発するための包括的なガイドを提供することによって、この問題を解決します。この本は、現代の機械学習における持続可能性の概念の導入と、技術の進歩に直面して人類の生存を確保する上での重要性から始まります。次に、複数のマシンにアルゴリズムを配布することに関連する潜在的なリスクを含む、分散型機械学習の問題を掘り下げます。これらのリスクがどのように学習プロセスを危険にさらし、望ましくない結果につながるのかを説明しています。

You may also be interested in:

Ultimate MLOps for Machine Learning Models Use Real Case Studies to Efficiently Build, Deploy, and Scale Machine Learning Pipelines with MLOps
Machine Learning For Beginners A Math Free Introduction for Business and Individuals to Machine Learning, Big Data, Data Science, and Neural Networks
Ultimate MLOps for Machine Learning Models Use Real Case Studies to Efficiently Build, Deploy, and Scale Machine Learning Pipelines with MLOps
Unsupervised Machine Learning in Python Master Data Science and Machine Learning with Cluster Analysis, Gaussian Mixture Models, and Principal Components Analysis
Hands-On Machine Learning with Scikit-Learn and Scientific Python Toolkits: A practical guide to implementing supervised and unsupervised machine learning algorithms in Python
Hacker|s Guide to Machine Learning with Python Hands-on guide to solving real-world Machine Learning problems with Scikit-Learn, TensorFlow 2, and Keras
Machine Learning Hero Master Data Science with Python Essentials Machine Learning with Python Hands-On Guide from Beginner to Expert (Mastering the AI Revolution Book 1)
Fundamentals of Machine & Deep Learning A Complete Guide on Python Coding for Machine and Deep Learning with Practical Exercises for Learners (Sachan Book 102)
Machine Learning for Emotion Analysis in Python: Build AI-powered tools for analyzing emotion using natural language processing and machine learning
Python Machine Learning A Hands-On Beginner|s Guide to Effectively Understand Artificial Neural Networks and Machine Learning Using Python
Python Machine Learning Is The Complete Guide To Everything You Need To Know About Python Machine Learning Keras, Numpy, Scikit Learn, Tensorflow, With Useful Exercises and examples
Ultimate Machine Learning with ML.NET Build, Optimize, and Deploy Powerful Machine Learning Models for Data-Driven Insights with ML.NET, Azure Functions, and Web API
Python Machine Learning Understand Python Libraries (Keras, NumPy, Scikit-lear, TensorFlow) for Implementing Machine Learning Models in Order to Build Intelligent Systems
Data Science and Machine Learning Interview Questions Using R Crack the Data Scientist and Machine Learning Engineers Interviews with Ease
Data Science and Machine Learning Interview Questions Using R: Crack the Data Scientist and Machine Learning Engineers Interviews with Ease
Robust Statistics Theory and Methods (with R), Second Edition
Ultimate Machine Learning with ML.NET: Build, Optimize, and Deploy Powerful Machine Learning Models for Data-Driven Insights with ML.NET, Azure Functions, and Web API (English Edition)
Python Machine Learning for Beginners: Unlocking the Power of Data. A Beginner|s Guide to Machine Learning with Python
Python Machine Learning for Beginners Unlocking the Power of Data. A Beginner|s Guide to Machine Learning with Python
Python Machine Learning for Beginners Unlocking the Power of Data. A Beginner|s Guide to Machine Learning with Python
The Art of Machine Learning A Hands-On Guide to Machine Learning with R
Machine Learning Q and AI 30 Essential Questions and Answers on Machine Learning and AI
Machine Learning Q and AI: 30 Essential Questions and Answers on Machine Learning and AI
The Art of Machine Learning: A Hands-On Guide to Machine Learning with R
The Art of Machine Learning A Hands-On Guide to Machine Learning with R
Machine Learning Q and AI 30 Essential Questions and Answers on Machine Learning and AI
Machine Learning with Python Comprehensive Beginner’s Guide to Machine Learning in Python with Exercises and Case Studies
Machine Learning with Rust: A practical attempt to explore Rust and its libraries across popular machine learning techniques
Machine Learning with Rust A practical attempt to explore Rust and its libraries across popular Machine Learning techniques
Practical Automated Machine Learning on Azure Using Azure Machine Learning to Quickly Build AI Solutions, First Edition
Python Machine Learning: Leveraging Python for Implementing Machine Learning Algorithms and Applications (2023 Guide)
Machine Learning for Finance Beginner|s guide to explore machine learning in banking and finance
Machine Learning With Python A Comprehensive Beginners Guide to Learn the Realms of Machine Learning with Python
The Definitive Guide to Machine Learning Operations in AWS Machine Learning Scalability and Optimization with AWS
Image Processing and Machine Learning, Volume 2 Advanced Topics in Image Analysis and Machine Learning
Machine Learning A Comprehensive, Step-by-Step Guide to Intermediate Concepts and Techniques in Machine Learning
Google JAX Essentials A quick practical learning of blazing-fast library for Machine Learning and Deep Learning projects
Theory and Applications of Recent Robust Methods (Statistics for Industry and Technology)
Shallow Learning vs. Deep Learning A Practical Guide for Machine Learning Solutions
Shallow Learning vs. Deep Learning A Practical Guide for Machine Learning Solutions