BOOKS - Explainable Deep Learning AI: Methods and Challenges
Explainable Deep Learning AI: Methods and Challenges - Jenny Benois-Pineau March 10, 2023 PDF  BOOKS
ECO~32 kg CO²

3 TON

Views
3681

Telegram
 
Explainable Deep Learning AI: Methods and Challenges
Author: Jenny Benois-Pineau
Year: March 10, 2023
Format: PDF
File size: PDF 4.1 MB
Language: English



Pay with Telegram STARS
Book Explainable Deep Learning Methods and Challenges Book Overview: Explainable Deep Learning Methods and Challenges is a comprehensive guide to the latest advancements in the field of Explainable Artificial Intelligence (XAI), providing an overview of the current state of the art in XAI, along with novel technical methods and applications that address the challenges of explainability in deep learning AI systems. The book begins by covering the basics of XAI and its importance in various applications of artificial intelligence, before delving into specific technical methods and approaches for deep learning, including general XAI methods and their applications, as well as user-oriented evaluation approaches.
Книга Объяснимые методы глубокого обучения и проблемы Обзор книги: Explainable Deep arning Methods and Challenges - это всеобъемлющее руководство по последним достижениям в области Explainable Artificial Intelligence (XAI), предоставляющее обзор текущего состояния техники в XAI, наряду с новыми техническими методами и приложениями, которые решают проблемы объяснимости в системах глубокого обучения ИИ. Книга начинается с освещения основ XAI и его важности в различных приложениях искусственного интеллекта, прежде чем углубиться в конкретные технические методы и подходы для глубокого обучения, включая общие методы XAI и их приложения, а также ориентированные на пользователя оценочные подходы.
Livre Expliquable Deep arning Methods and Challenges est un guide complet des dernières avancées en matière d'Intelligence Artificielle Exploitable (XAI) qui donne un aperçu de l'état actuel de la technique dans XAI, ainsi que de nouvelles techniques et applications qui résolvent les problèmes explications dans les systèmes d'apprentissage profond de l'IA. livre commence par mettre en lumière les bases de XAI et son importance dans les différentes applications de l'intelligence artificielle, avant d'approfondir les méthodes techniques spécifiques et les approches d'apprentissage profond, y compris les méthodes générales de XAI et leurs applications, ainsi que les approches d'évaluation axées sur l'utilisateur.
Métodos Explicables de Aprendizaje Profundo y Desafíos Revisión del : Explorable Deep arning Methods and Challenges es una guía completa sobre los últimos avances en Inteligencia Artificial Explosiva (XAI) que ofrece una visión general del estado actual de la técnica en XAI, junto con nuevas técnicas y aplicaciones que resuelven problemas de explicabilidad en sistemas de aprendizaje profundo de IA. libro comienza destacando los fundamentos de XAI y su importancia en las diferentes aplicaciones de inteligencia artificial antes de profundizar en técnicas y enfoques técnicos específicos para el aprendizaje profundo, incluyendo las técnicas generales de XAI y sus aplicaciones, así como enfoques de evaluación orientados al usuario.
O livro Explica Técnicas de Aprendizagem Profunda e os Problemas A Revisão do Livro: Expainable Deep arning Methods and Challenges é um guia abrangente sobre os avanços mais recentes na Exploração da Inteligência Artística (XAI), que fornece uma visão geral do estado atual da tecnologia no XAI, juntamente com os novos métodos técnicos e aplicativos que resolvem problemas de explicabilidade nos sistemas de aprendizagem profunda da IA. O livro começa com a cobertura dos fundamentos do XAI e sua importância em vários aplicativos de inteligência artificial antes de se aprofundar em técnicas técnicas e abordagens específicas para o aprendizado profundo, incluindo técnicas comuns XAI e seus aplicativos, e abordagens de avaliação orientadas para o usuário.
I metodi di apprendimento approfondito e i problemi Esplorativi del libro: Esplainable Deep arning Methods and Challenges è una guida completa agli ultimi sviluppi di Esplainable Artigial Intelligence (XAI) che fornisce una panoramica dello stato attuale della tecnologia XAI, insieme a nuove tecniche e applicazioni tecniche che risolvono i problemi di spiegabilità nei sistemi di apprendimento dell'intelligenza artificiale. Il libro inizia mettendo in luce le basi di XAI e la sua importanza in diverse applicazioni di intelligenza artificiale, prima di approfondire le tecniche tecniche e gli approcci specifici per l'apprendimento approfondito, inclusi i metodi comuni XAI e le loro applicazioni e gli approcci di valutazione orientati all'utente.
Das Buch Erklärbare Deep-arning-Methoden und -Probleme Buchübersicht: Explainable Deep arning Methods and Challenges ist ein umfassender itfaden zu den neuesten Fortschritten in der Explainable Artificial Intelligence (XAI), der einen Überblick über den aktuellen Stand der Technik in XAI bietet, zusammen mit neuen technischen Methoden und Anwendungen, die Probleme lösen Erklärbarkeit in KI-Deep-arning-Systemen. Das Buch beginnt damit, die Grundlagen von XAI und seine Bedeutung in verschiedenen Anwendungen der künstlichen Intelligenz hervorzuheben, bevor es tiefer in spezifische technische Methoden und Ansätze für Deep arning eintaucht, einschließlich allgemeiner XAI-Methoden und ihrer Anwendungen sowie benutzerzentrierter Bewertungsansätze.
Book Explainable Deep arning Methods and Challenges Book Overview: Explainable Deep arning Methods and Challenges to kompleksowy przewodnik po najnowszych osiągnięciach w Explainable Artificial Intelligence (XAI), zapewniający przegląd aktualnego stanu technologii w XAI, wraz z nowymi metodami i zastosowaniami technicznymi które rozwiązują problemy wyjaśnialności w systemach głębokiego uczenia się sztucznej inteligencji. Książka rozpoczyna się od podkreślenia podstaw XAI i jej znaczenia w różnych zastosowaniach sztucznej inteligencji, zanim przejdzie do konkretnych metod technicznych i podejść do głębokiego uczenia się, w tym ogólnych metod XAI i ich zastosowań, a także zorientowanych na użytkownika metod oceny.
Book Explainable arning Methods and Exchanges Book Overview: Explainable Deep Methods and Explinable Deep Technology and Technology), במערכות למידה עמוקות. הספר מתחיל בכך שהוא מדגיש את היסודות של XAI ואת חשיבותו ביישומי AI שונים, לפני שהוא מתעמק בשיטות ובגישות טכניות ספציפיות ללמידה עמוקה, כולל שיטות XAI כלליות והיישומים שלהם, וגישות הערכה מונחות משתמש.''
Açıklanabilir Kitap Derin Öğrenme Yöntemleri ve Zorlukları Kitaba Genel Bakış: Açıklanabilir Derin Öğrenme Yöntemleri ve Zorlukları, Açıklanabilir Yapay Zeka (XAI) alanındaki en son gelişmelere yönelik kapsamlı bir kılavuzdur ve XAI'daki mevcut teknoloji durumuna genel bir bakış sunarken, AI derin öğrenme sistemlerinde açıklanabilirlik sorunlarını çözen yeni teknik yöntemler ve uygulamalarla birlikte. Kitap, XAI'nin temellerini ve çeşitli AI uygulamalarındaki önemini vurgulayarak, genel XAI yöntemleri ve uygulamaları ve kullanıcı odaklı değerlendirme yaklaşımları da dahil olmak üzere derin öğrenme için belirli teknik yöntem ve yaklaşımları incelemeden önce başlar.
كتاب طرق وتحديات التعلم العميق القابلة للتفسير نظرة عامة على الكتاب: طرق وتحديات التعلم العميق القابلة للتفسير هو دليل شامل لآخر التطورات في الذكاء الاصطناعي القابل للتفسير (XAI)، ويقدم لمحة عامة عن الوضع الحالي للتكنولوجيا في XAI، إلى جانب الأساليب والتطبيقات التقنية الجديدة التي تحل المشكلات إمكانية التفسير في أنظمة التعلم العميق للذكاء الاصطناعي. يبدأ الكتاب بتسليط الضوء على أساسيات XAI وأهميته في مختلف تطبيقات الذكاء الاصطناعي، قبل الخوض في طرق ونهج تقنية محددة للتعلم العميق، بما في ذلك طرق XAI العامة وتطبيقاتها ونهج التقييم الموجهة للمستخدم.
책 설명 가능한 딥 러닝 방법 및 챌린지 도서 개요: 설명 가능한 딥 러닝 방법 및 챌린지는 XAI (Explainable Artificial Intelligence) 의 최신 발전에 대한 포괄적 인 가이드이며 XAI의 현재 기술 상태에 대한 개요를 제공급합니다. 이 책은 일반 XAI 방법 및 응용 프로그램 및 사용자 지향 평가 접근 방식을 포함하여 딥 러닝을위한 특정 기술 방법과 접근 방식을 탐구하기 전에 XAI의 기본 사항과 다양한 AI 응용 프로그램에서의 중요성을 강조하는 것으로 시작합니다.
Book Explainable Deep arning Methods and Challenge Book Overview: Explainable Deep arning Methods and Challenge XAIは、XAIの最新技術の概要と、問題を解決する新しい技術的手法とアプリケーションを提供する総合的なガイドですAIディープラーニングシステムの説明。本書は、XAIの基本と、さまざまなAIアプリケーションにおけるその重要性を強調してから始まり、一般的なXAIメソッドとそのアプリケーション、およびユーザー指向の評価アプローチを含む、ディープラーニングの具体的な技術的方法とアプローチを掘り下げます。
書可解釋的深度學習方法和問題書評:可解釋的深度學習方法與挑戰是可解釋人工智能(XAI)最新進展的全面指南,提供對XAI技術現狀的概述,以及解決問題的新技術方法和應用程序AI深度學習系統中的可解釋性。該書首先重點介紹了XAI的基礎知識及其在各種人工智能應用中的重要性,然後深入研究了用於深度學習的特定技術方法和方法,包括XAI及其應用的一般技術以及以用戶為中心的評估方法。

You may also be interested in:

Artificial Intelligence What You Need to Know About Machine Learning, Robotics, Deep Learning, Recommender Systems, Internet of Things, Neural Networks, Reinforcement Learning, and Our Future
Explainable Machine Learning Models and Architectures
Explainable Machine Learning Models and Architectures
Deep Learning with Python The Ultimate Beginners Guide for Deep Learning with Python
Deep Machine Learning Complete Tips and Tricks to Deep Machine Learning
Machine Learning with Python 3 in 1 Beginners Guide + Step by Step Methods + Advanced Methods and Strategies to Learn Machine Learning with Python
Simple Machine Learning for Programmers Beginner|s Intro to Using Machine Learning, Deep Learning, and Artificial Intelligence for Practical Applications
Deep Learning for Natural Language Processing Develop Deep Learning Models for Natural Language in Python
Deep Learning with Python The ultimate beginners guide to Learn Deep Learning with Python Step by Step
Interpretable Machine Learning A Guide for Making Black Box Models Explainable
Python Deep Learning: Understand how deep neural networks work and apply them to real-world tasks
Deep Learning via Rust State of the Art Deep Learning in Rust
Instructional Methods for Differentiation and Deeper Learning (A Toolkit for Effective Instruction to Improve Student Learning and Success)
Bio-inspired Algorithms in Machine Learning and Deep Learning for Disease Detection
Enneagram: Visible Learning and Deep Learning Book for Highly Sensitive Person
Machine Learning with Python Cookbook Practical Solutions from Preprocessing to Deep Learning
Machine Learning and Deep Learning Techniques in Wireless and Mobile Networking Systems
Design of Intelligent Applications using Machine Learning and Deep Learning Techniques
Disease Prediction using Machine Learning, Deep Learning and Data Analytics
Disease Prediction using Machine Learning, Deep Learning and Data Analytics
Python AI Programming Navigating fundamentals of ML, Deep Learning, NLP, and reinforcement learning in practice
Python AI Programming Navigating fundamentals of ML, Deep Learning, NLP, and reinforcement learning in practice
Building Intelligent Systems Using Machine Learning and Deep Learning Security, Applications and Its Challenges
Risk Modeling Practical Applications of Artificial Intelligence, Machine Learning, and Deep Learning
Building Intelligent Systems Using Machine Learning and Deep Learning Security, Applications and Its Challenges
Python AI Programming: Navigating fundamentals of ML, deep learning, NLP, and reinforcement learning in practice
Machine Learning with Python A Comprehensive Guide To Algorithms, Deep Learning Techniques, And Practical Applications
Machine Learning and Deep Learning in Neuroimaging Data Analysis
Learning TensorFlow A Guide to Building Deep Learning Systems
TensorFlow for Deep Learning From Linear Regression to Reinforcement Learning
Machine Learning - A Journey To Deep Learning With Exercises And Answers
Machine Learning and Deep Learning in Natural Language Processing
Machine Learning and Deep Learning in Neuroimaging Data Analysis
Machine Learning and Deep Learning in Natural Language Processing
Machine Learning and Deep Learning in Real-Time Applications
Python Machine Learning The Ultimate Guide for Beginners to Machine Learning with Python, Programming and Deep Learning, Artificial Intelligence, Neural Networks, and Data Science
Advanced Decision Sciences Based on Deep Learning and Ensemble Learning Algorithms A Practical Approach Using Python
Default Loan Prediction Based On Customer Behavior Using Machine Learning And Deep Learning With Python, Second Edition
Learning Deep Learning Theory and Practice of Neural Networks, Computer Vision, NLP, and Transformers using TensorFlow
Automated Software Engineering: A Deep Learning-Based Approach (Learning and Analytics in Intelligent Systems Book 8)