BOOKS - NETWORK TECHNOLOGIES - Machine Learning for Future Wireless Communications
Machine Learning for Future Wireless Communications - Fa-Long Luo 2020 PDF Wiley-IEEE Press BOOKS NETWORK TECHNOLOGIES
ECO~18 kg CO²

1 TON

Views
118302

 
Machine Learning for Future Wireless Communications
Author: Fa-Long Luo
Year: 2020
Pages: 475
Format: PDF
File size: 20.9 MB
Language: ENG



The book "Machine Learning for Future Wireless Communications" is a comprehensive guide to understanding the role of machine learning in shaping the future of wireless communication technology. The author, a renowned expert in the field, provides a detailed overview of the current state of wireless communication technology and explores how machine learning can be used to improve its performance, scalability, and reliability. The book covers topics such as the basics of machine learning, the application of machine learning algorithms in wireless communication, and the challenges and limitations of using machine learning in this field. It also discusses the potential benefits of integrating machine learning into wireless communication systems, including improved network performance, increased efficiency, and enhanced user experience. The need to study and understand the process of technology evolution is highlighted throughout the book, as the author emphasizes the importance of staying up-to-date with the latest advancements in machine learning and wireless communication technologies. The book encourages readers to develop their own personal paradigm for perceiving the technological process of developing modern knowledge, which is essential for survival in today's rapidly changing world. By doing so, readers will gain a deeper understanding of the interconnectedness of technology and humanity and be better equipped to navigate the complexities of the digital age. The book also touches on the possibility of developing a personal paradigm for perceiving the technological process of developing modern knowledge as the basis for the survival of humanity and the survival of the unification of people in a warring state.
Книга «Машинное обучение для будущих беспроводных коммуникаций» является всеобъемлющим руководством по пониманию роли машинного обучения в формировании будущего технологии беспроводной связи. Автор, известный эксперт в этой области, дает подробный обзор современного состояния технологии беспроводной связи и исследует, как машинное обучение можно использовать для повышения ее производительности, масштабируемости и надежности. Книга охватывает такие темы, как основы машинного обучения, применение алгоритмов машинного обучения в беспроводной связи, а также проблемы и ограничения использования машинного обучения в этой области. В нем также обсуждаются потенциальные преимущества интеграции машинного обучения в системы беспроводной связи, включая улучшенную производительность сети, повышенную эффективность и улучшенный пользовательский опыт. На протяжении всей книги подчеркивается необходимость изучения и понимания процесса эволюции технологий, поскольку автор подчеркивает важность оставаться в курсе последних достижений в области машинного обучения и технологий беспроводной связи. Книга призывает читателей выработать собственную личную парадигму восприятия технологического процесса развития современных знаний, которые необходимы для выживания в современном быстро меняющемся мире. Поступая таким образом, читатели получат более глубокое понимание взаимосвязанности технологий и человечества и будут лучше подготовлены к тому, чтобы ориентироваться в сложностях цифровой эпохи. В книге также затрагивается возможность выработки личностной парадигмы восприятия технологического процесса развития современного знания как основы выживания человечества и выживания объединения людей в воюющем государстве.
L'apprendimento automatico per le comunicazioni wireless future è una guida completa per comprendere il ruolo dell'apprendimento automatico nella formazione della tecnologia wireless futura. L'autore, noto esperto in questo campo, fornisce una panoramica dettagliata dello stato attuale della tecnologia wireless e indaga come l'apprendimento automatico può essere utilizzato per migliorarne le prestazioni, la scalabilità e l'affidabilità. Il libro affronta argomenti quali le basi dell'apprendimento automatico, l'applicazione degli algoritmi di apprendimento automatico nelle comunicazioni wireless e i problemi e le limitazioni dell'uso dell'apprendimento automatico in questo campo. tratta inoltre dei potenziali vantaggi dell'integrazione dell'apprendimento automatico nei sistemi wireless, tra cui prestazioni di rete migliorate, maggiore efficienza e maggiore esperienza utente. L'intero libro sottolinea la necessità di studiare e comprendere l'evoluzione della tecnologia, poiché l'autore sottolinea l'importanza di rimanere aggiornato sugli ultimi progressi nell'apprendimento automatico e nelle tecnologie wireless. Il libro invita i lettori a sviluppare il proprio paradigma personale di percezione del processo tecnologico di sviluppo delle conoscenze moderne, essenziali per la sopravvivenza in un mondo in continua evoluzione. In questo modo, i lettori avranno una maggiore comprensione dell'interconnessione tra tecnologia e umanità e saranno meglio preparati per orientarsi verso le complessità dell'era digitale. Il libro affronta anche la possibilità di sviluppare un paradigma personale per la percezione del processo tecnologico dello sviluppo della conoscenza moderna come base della sopravvivenza dell'umanità e della sopravvivenza dell'unione delle persone in uno stato in guerra.
''
Machine arning for Future Wireless Communicationsは、ワイヤレス技術の未来を形作るための機械学習の役割を理解するための包括的なガイドです。著者、分野の有名な専門家は、ワイヤレス技術の現在の状態の詳細な概要を提供し、そのパフォーマンス、スケーラビリティと信頼性を向上させるために機械学習がどのように使用できるかを探ります。本書では、機械学習の基礎、無線通信における機械学習アルゴリズムの適用、この分野における機械学習の使用の課題と限界などのトピックを取り上げています。また、ネットワーク性能の向上、効率の向上、ユーザーエクスペリエンスの向上など、機械学習をワイヤレス通信システムに統合することの潜在的な利点についても説明します。著者が機械学習とワイヤレス技術の最新の進歩を維持することの重要性を強調するように、本を通して、技術の進化を研究し理解する必要性が強調されています。この本は、現代の急速に変化する世界で生存するために必要な現代の知識の発展の技術的プロセスの認識のために、読者自身の個人的なパラダイムを開発することを奨励しています。そうすることで、読者は技術と人類の相互接続性をより深く理解し、デジタル時代の複雑さをナビゲートするためのより良い装備を得ることができます。この本はまた、人類の生存の基礎としての現代知識の発展の技術的プロセスの認識のための個人的なパラダイムを開発する可能性と戦争状態での人々の統一の生存に触れています。

You may also be interested in:

Machine Learning Hero Master Data Science with Python Essentials Machine Learning with Python Hands-On Guide from Beginner to Expert (Mastering the AI Revolution Book 1)
Fundamentals of Machine & Deep Learning A Complete Guide on Python Coding for Machine and Deep Learning with Practical Exercises for Learners (Sachan Book 102)
Machine Learning for Emotion Analysis in Python: Build AI-powered tools for analyzing emotion using natural language processing and machine learning
Python Machine Learning A Hands-On Beginner|s Guide to Effectively Understand Artificial Neural Networks and Machine Learning Using Python
Python Machine Learning Is The Complete Guide To Everything You Need To Know About Python Machine Learning Keras, Numpy, Scikit Learn, Tensorflow, With Useful Exercises and examples
Intelligent Wireless Communications (Telecommunications)
Wireless Communications Systems An Introduction
Optical Fiber and Wireless Communications
Fundamentals of MIMO Wireless Communications
5G Mobile and Wireless Communications Technology
Design and Optimization for 5G Wireless Communications
Introduction to Digital Wireless Communications
Wireless Multimedia Computational Communications
6G Wireless Communications and Mobile Networking
Ultimate Machine Learning with ML.NET Build, Optimize, and Deploy Powerful Machine Learning Models for Data-Driven Insights with ML.NET, Azure Functions, and Web API
Python Machine Learning Understand Python Libraries (Keras, NumPy, Scikit-lear, TensorFlow) for Implementing Machine Learning Models in Order to Build Intelligent Systems
Data Science and Machine Learning Interview Questions Using R: Crack the Data Scientist and Machine Learning Engineers Interviews with Ease
Data Science and Machine Learning Interview Questions Using R Crack the Data Scientist and Machine Learning Engineers Interviews with Ease
Ultimate Machine Learning with ML.NET: Build, Optimize, and Deploy Powerful Machine Learning Models for Data-Driven Insights with ML.NET, Azure Functions, and Web API (English Edition)
Python Machine Learning for Beginners Unlocking the Power of Data. A Beginner|s Guide to Machine Learning with Python
Python Machine Learning for Beginners Unlocking the Power of Data. A Beginner|s Guide to Machine Learning with Python
Python Machine Learning for Beginners: Unlocking the Power of Data. A Beginner|s Guide to Machine Learning with Python
Machine Learning Q and AI: 30 Essential Questions and Answers on Machine Learning and AI
The Art of Machine Learning A Hands-On Guide to Machine Learning with R
Machine Learning Q and AI 30 Essential Questions and Answers on Machine Learning and AI
Machine Learning Q and AI 30 Essential Questions and Answers on Machine Learning and AI
The Art of Machine Learning: A Hands-On Guide to Machine Learning with R
The Art of Machine Learning A Hands-On Guide to Machine Learning with R
5G and Beyond Wireless Communications Fundamentals, Applications, and Challenges
New Directions in Wireless Communications Systems From Mobile to 5G
Blockchain Technology for IoT and Wireless Communications
Metasurfaces for Wireless Communications Designs and Implementations
Indoor Wireless Communications From Theory to Implementation
Metasurfaces for Wireless Communications Designs and Implementations
5G and Beyond Wireless Communications Fundamentals, Applications, and Challenges
Wireless Communications from the Ground Up: An SDR Perspective
Guide to Wireless Communications, 4th Edition
Wireless Communications Signal Processing Perspectives
Machine Learning with Rust: A practical attempt to explore Rust and its libraries across popular machine learning techniques
Practical Automated Machine Learning on Azure Using Azure Machine Learning to Quickly Build AI Solutions, First Edition