BOOKS - Supervised and Unsupervised Data Engineering for Multimedia Data
Supervised and Unsupervised Data Engineering for Multimedia Data - Suman Kumar Swarnkar, J.P. Patra, Sapna Singh Kshatri 2024 PDF | EPUB Wiley-Scrivener BOOKS
ECO~15 kg CO²

1 TON

Views
76292

Telegram
 
Supervised and Unsupervised Data Engineering for Multimedia Data
Author: Suman Kumar Swarnkar, J.P. Patra, Sapna Singh Kshatri
Year: 2024
Pages: 372
Format: PDF | EPUB
File size: 10.1 MB
Language: ENG



Pay with Telegram STARS
Supervised and Unsupervised Data Engineering for Multimedia Data In today's world, technology is advancing at an unprecedented rate, and it is essential to understand the process of its evolution to ensure the survival of humanity and unity among nations. The book "Supervised and Unsupervised Data Engineering for Multimedia Data" provides a comprehensive overview of the development of data engineering techniques for multimedia data, highlighting their potential applications and challenges. This book is a valuable resource for researchers, practitioners, and students who want to learn about the latest trends in data engineering and their practical applications. The book begins by discussing the importance of understanding the evolution of technology and its impact on society. It emphasizes the need to develop a personal paradigm for perceiving the technological process of developing modern knowledge as the basis for survival. This chapter sets the stage for the rest of the book, providing readers with a solid foundation for understanding the concepts that follow. Chapter 1: Introduction to Data Engineering This chapter introduces the concept of data engineering and its significance in today's digital age.
Контролируемая и неконтролируемая инженерия данных для мультимедийных данных В современном мире технологии развиваются с беспрецедентной скоростью, и важно понимать процесс их эволюции, чтобы обеспечить выживание человечества и единство между нациями. В книге «Supervised and Unsupervised Data Engineering for Multimedia Data» (Контролируемая и неконтролируемая инженерия данных для мультимедийных данных) представлен всесторонний обзор разработки методов инженерии данных для мультимедийных данных с выделением их потенциальных применений и проблем. Эта книга является ценным ресурсом для исследователей, практиков и студентов, которые хотят узнать о последних тенденциях в области инженерии данных и их практических применениях. Книга начинается с обсуждения важности понимания эволюции технологий и их влияния на общество. В нем подчеркивается необходимость выработки личностной парадигмы восприятия технологического процесса развития современных знаний как основы выживания. Эта глава закладывает основу для остальной части книги, предоставляя читателям прочную основу для понимания следующих концепций. Глава 1: Введение в Data Engineering В этой главе представлена концепция Data Engineering и ее значение в современную цифровую эпоху.
Ingénierie de données contrôlées et non contrôlées pour les données multimédia Dans le monde d'aujourd'hui, les technologies évoluent à une vitesse sans précédent et il est important de comprendre leur processus d'évolution pour assurer la survie de l'humanité et l'unité entre les nations. livre « Supervised and Unsupervised Data Engineering for Multimedia Data » donne un aperçu complet du développement des techniques d'ingénierie des données pour les données multimédia, en soulignant leurs applications et leurs problèmes potentiels. Ce livre est une ressource précieuse pour les chercheurs, les praticiens et les étudiants qui souhaitent en apprendre davantage sur les dernières tendances en ingénierie des données et leurs applications pratiques. livre commence par discuter de l'importance de comprendre l'évolution des technologies et leur impact sur la société. Il souligne la nécessité d'élaborer un paradigme personnel pour la perception du processus technologique du développement des connaissances modernes comme base de la survie. Ce chapitre jette les bases du reste du livre en fournissant aux lecteurs une base solide pour comprendre les concepts suivants. Chapitre 1 : Introduction au Data Engineering Ce chapitre présente le concept de Data Engineering et son importance à l'ère numérique moderne.
Ingeniería de datos controlada e incontrolada para datos multimedia En el mundo actual, la tecnología evoluciona a una velocidad sin precedentes y es importante comprender su proceso de evolución para garantizar la supervivencia de la humanidad y la unidad entre las naciones. libro Supervised and Unsupervised Data Engineering for Multimedia Data ofrece una visión general completa del desarrollo de técnicas de ingeniería de datos para datos multimedia, resaltando sus posibles aplicaciones y problemas. Este libro es un recurso valioso para investigadores, profesionales y estudiantes que desean conocer las últimas tendencias en ingeniería de datos y sus aplicaciones prácticas. libro comienza discutiendo la importancia de entender la evolución de la tecnología y su impacto en la sociedad. Destaca la necesidad de generar un paradigma personal para percibir el proceso tecnológico del desarrollo del conocimiento moderno como base de supervivencia. Este capítulo sienta las bases para el resto del libro, proporcionando a los lectores una base sólida para comprender los siguientes conceptos. Capítulo 1: Introducción a la Ingeniería de Datos Este capítulo presenta el concepto de Ingeniería de Datos y su significado en la era digital moderna.
Ingegneria dei dati per i dati multimediali controllata e incontrollata Nel mondo moderno, la tecnologia evolve ad una velocità senza precedenti ed è importante comprendere il processo di evoluzione per garantire la sopravvivenza dell'umanità e la coesione tra le nazioni. Il libro «Supervised and Unsupervised Data Engineering for Multimedia Data» fornisce una panoramica completa dello sviluppo di tecniche di ingegneria multimediale per i dati multimediali, evidenziando potenziali applicazioni e problemi. Questo libro è una preziosa risorsa per ricercatori, professionisti e studenti che vogliono conoscere le ultime tendenze dell'ingegneria dei dati e le loro applicazioni pratiche. Il libro inizia con un dibattito sull'importanza di comprendere l'evoluzione della tecnologia e il loro impatto sulla società. Sottolinea la necessità di sviluppare un paradigma personale per la percezione del processo tecnologico di sviluppo della conoscenza moderna come base di sopravvivenza. Questo capitolo pone le basi per il resto del libro, fornendo ai lettori una base solida per comprendere i seguenti concetti. Capitolo 1: Introduzione a Data Engineering Questo capitolo presenta il concetto di Data Engineering e il suo significato nell'era digitale moderna.
Kontrolliertes und unkontrolliertes Data Engineering für Multimedia-Daten In der heutigen Welt entwickeln sich Technologien in einer beispiellosen Geschwindigkeit, und es ist wichtig, den Prozess ihrer Entwicklung zu verstehen, um das Überleben der Menschheit und die Einheit zwischen den Nationen zu gewährleisten. Das Buch „Supervised and Unsupervised Data Engineering for Multimedia Data“ gibt einen umfassenden Überblick über die Entwicklung von Data-Engineering-Methoden für Multimedia-Daten und beleuchtet deren Einsatzmöglichkeiten und Herausforderungen. Dieses Buch ist eine wertvolle Ressource für Forscher, Praktiker und Studenten, die sich über die neuesten Trends im Data Engineering und ihre praktischen Anwendungen informieren möchten. Das Buch beginnt mit einer Diskussion über die Bedeutung des Verständnisses der Technologieentwicklung und ihrer Auswirkungen auf die Gesellschaft. Es betont die Notwendigkeit, ein persönliches Paradigma für die Wahrnehmung des technologischen Prozesses der Entwicklung des modernen Wissens als Grundlage des Überlebens zu entwickeln. Dieses Kapitel legt den Grundstein für den Rest des Buches und bietet den sern eine solide Grundlage, um die folgenden Konzepte zu verstehen. Kapitel 1: Einführung in das Data Engineering In diesem Kapitel wird das Konzept des Data Engineering und seine Bedeutung im heutigen digitalen Zeitalter vorgestellt.
''
Multimedya Verileri için Kontrollü ve Kontrolsüz Veri Mühendisliği Günümüz dünyasında, teknoloji benzeri görülmemiş bir hızla gelişmektedir ve insanlığın hayatta kalmasını ve uluslar arasındaki birliği sağlamak için evrim süreçlerini anlamak önemlidir. Multimedya Verileri için Denetlenen ve Denetlenmeyen Veri Mühendisliği kitabı, multimedya verileri için veri mühendisliği tekniklerinin geliştirilmesine kapsamlı bir genel bakış sunarak, potansiyel uygulamalarını ve zorluklarını vurgulamaktadır. Bu kitap, veri mühendisliğindeki en son eğilimler ve pratik uygulamaları hakkında bilgi edinmek isteyen araştırmacılar, uygulayıcılar ve öğrenciler için değerli bir kaynaktır. Kitap, teknolojinin evrimini ve toplum üzerindeki etkisini anlamanın önemini tartışarak başlıyor. Hayatta kalmanın temeli olarak modern bilginin gelişiminin teknolojik sürecinin algılanması için kişisel bir paradigma geliştirme ihtiyacını vurgulamaktadır. Bu bölüm, kitabın geri kalanı için zemin hazırlar ve okuyuculara aşağıdaki kavramları anlamak için sağlam bir temel sağlar. Bölüm 1: Veri Mühendisliğine Giriş Bu bölüm Veri Mühendisliği kavramını ve günümüz dijital çağındaki etkilerini tanıtmaktadır.
多媒體數據的可控且不受控制的數據工程在當今世界中,技術以前所未有的速度發展,了解其演變過程,以確保人類生存和國家之間的團結非常重要。「多媒體數據受控和無監督的數據工程」一書全面概述了多媒體數據數據工程技術的發展,突出了其潛在應用和挑戰。這本書是研究人員、從業人員和學生希望了解數據工程的最新趨勢及其實際應用的寶貴資源。本書首先討論了了解技術演變及其對社會影響的重要性。它強調需要建立個人範式,將現代知識的技術發展作為生存的基礎。本章為本書的其余部分奠定了基礎,為讀者提供了了解以下概念的堅實基礎。第一章:數據工程簡介本章介紹了數據工程的概念及其在現代數字時代的意義。

You may also be interested in:

Data Universe: Organizational Insights with Python: Embracing Data Driven Decision Making
Univariate, Bivariate, and Multivariate Statistics Using R Quantitative Tools for Data Analysis and Data Science
Data Universe Organizational Insights with Python Embracing Data Driven Decision Making
Tableau for Salesforce Visualise data and generate insights with the leading platforms for data analytics
Behavioral Data Analysis with R and Python Customer-Driven Data for Real Business Results
Agile Data Science 2.0 Building Full-Stack Data Analytics Applications with Spark
Training Data for Machine Learning Human Supervision from Annotation to Data Science (Final)
Big Data, Small Devices Investigating the Natural World Using Real-Time Data
Big Data, Data Mining, and Machine Learning Value Creation for Business Leaders and Practitioners
Training Data for Machine Learning Human Supervision from Annotation to Data Science (Final)
Data Centric Artificial Intelligence: A Beginner|s Guide (Data-Intensive Research)
R Graphics Essentials for Great Data Visualization +200 Practical Examples You Want to Know for Data Science
Behavioral Data Analysis with R and Python: Customer-Driven Data for Real Business Results
The Data Preparation Journey: Finding Your Way with R (Chapman and Hall CRC Data Science Series)
Data Mesh Principles, Patterns, Architecture, and Strategies for Data-Driven Decision Making
Data Governance The Definitive Guide People, Processes, and Tools to Operationalize Data Trustworthiness
Data Universe Organizational Insights with Python Embracing Data Driven Decision Making
Learning Data Science Data Wrangling, Exploration, Visualization, and Modeling with Python (Final)
Practical Data Science with SAP Machine Learning Techniques for Enterprise Data, First Edition
SQL for Data Analysis Advanced Techniques for Transforming Data into Insights (Early Release)
Humanities Data in R Exploring Networks, Geospatial Data, Images, and Text, 2nd Edition
Humanities Data in R Exploring Networks, Geospatial Data, Images, and Text, 2nd Edition
The Self-Service Data Roadmap Democratize Data and Reduce Time to insight (Early Release)
Python for Data Analysis Data Wrangling with Pandas, NumPy, and IPython, 2nd Edition
Data Mesh Principles, Patterns, Architecture, and Strategies for Data-Driven Decision Making
Tableau for Salesforce Visualise data and generate insights with the leading platforms for data analytics
Learning Data Science Data Wrangling, Exploration, Visualization, and Modeling with Python (Final)
Hands-On Salesforce Data Cloud Implementing and Managing a Real-Time Customer Data Platform
Tuning the Snowflake Data Cloud Optimizing Your Data Platform to Minimize Cost and Maximize Performance
Data-Centric Security in Software Defined Networks (SDN) (Studies in Big Data, 149)
Python for Data Analysis Unlocking Insights and Driving Innovation with Powerful Data Techniques. 2 in 1 Guide
Python for Data Analysis The Ultimate Beginner|s Guide to Data Analytics, Deep Learning
Web Data APIs for Knowledge Graphs Easing Access to Semantic Data for Application Developers
Data Science in Chemistry: Artificial Intelligence, Big Data, Chemometrics and Quantum Computing with Jupyter
Core Data for iOS Developing Data-Driven Applications for the iPad, iPhone, and iPod touch
Data Warehouse and Data Mining: Concepts, techniques and real life applications (English Edition)
Practical Synthetic Data Generation Balancing Privacy and the Broad Availability of Data (Early Release)
Computer Science in Sport: Modeling, Simulation, Data Analysis and Visualization of Sports-Related Data
Data Sketches A journey of imagination, exploration, and beautiful data visualizations (AK Peters Visualization Series)
Computer Science in Sport Modeling, Simulation, Data Analysis and Visualization of Sports-Related Data