BOOKS - Introduction to Data Science A Python Approach to Concepts, Techniques and Ap...
Introduction to Data Science A Python Approach to Concepts, Techniques and Applications 2nd Edition - Laura Igual, Santi Segui 2024 PDF Springer BOOKS
ECO~14 kg CO²

1 TON

Views
12708

Telegram
 
Introduction to Data Science A Python Approach to Concepts, Techniques and Applications 2nd Edition
Author: Laura Igual, Santi Segui
Year: 2024
Pages: 255
Format: PDF
File size: 10.1 MB
Language: ENG



Pay with Telegram STARS
Ondrej Certik, et al. Introduction to Data Science A Python Approach to Concepts Techniques and Applications 2nd Edition by Dr. Ondrej Certik, et al. is a comprehensive guide to understanding data science concepts and techniques using Python programming language. The book covers various aspects of data science, including data acquisition, cleaning, visualization, analysis, and machine learning. It provides a detailed explanation of each concept and technique, along with practical examples and exercises to help readers apply their knowledge. The book begins by introducing the basics of data science, including the importance of data-driven decision making, the role of data scientists, and the evolution of technology in the field. It then delves into the process of data acquisition, discussing various sources of data, such as databases, APIs, and web scraping, and how to preprocess and clean the data for analysis. The authors also cover data visualization techniques, including scatter plots, bar charts, and heat maps, and explain how to use Python libraries like Matplotlib and Seaborn to create these visualizations. They also explore statistical modeling techniques, such as linear regression and clustering, and how to implement them using Python. In addition, the book covers machine learning algorithms, including supervised and unsupervised learning, and how to use Python libraries like Scikit-learn and TensorFlow to implement these algorithms.
Ondrej Certik, et al. Введение в науку о данных Python Approach to Concepts Techniques and Applications 2nd Edition by Dr. Ondrej Certik, et al. является всеобъемлющим руководством по пониманию концепций и методов науки о данных с использованием языка программирования Python. Книга охватывает различные аспекты науки о данных, включая сбор данных, очистку, визуализацию, анализ и машинное обучение. Он содержит подробное объяснение каждой концепции и техники, а также практические примеры и упражнения, помогающие читателям применить свои знания. Книга начинается с ознакомления с основами науки о данных, включая важность принятия решений на основе данных, роль специалистов по анализу данных и эволюцию технологий в этой области. Затем он углубляется в процесс сбора данных, обсуждая различные источники данных, такие как базы данных, API и веб-скрапинг, а также способы предварительной обработки и очистки данных для анализа. Авторы также описывают методы визуализации данных, включая диаграммы рассеяния, гистограммы и тепловые карты, и объясняют, как использовать библиотеки Python, такие как Matplotlib и Seaborn, для создания этих визуализаций. Они также изучают методы статистического моделирования, такие как линейная регрессия и кластеризация, и способы их реализации с помощью Python. Кроме того, книга охватывает алгоритмы машинного обучения, включая контролируемое и неконтролируемое обучение, а также то, как использовать библиотеки Python, такие как Scikit-learn и TensorFlow, для реализации этих алгоритмов.
Ondrej Certik, et al. Introduction à la science des données Python Approach to Concepts Techniques and Applications 2nd Edition par Dr. Ondrej Certik, et al. est un guide complet pour comprendre les concepts et les méthodes de la science des données en utilisant le langage de programmation Python. livre couvre différents aspects de la science des données, y compris la collecte de données, le nettoyage, la visualisation, l'analyse et l'apprentissage automatique. Il fournit une explication détaillée de chaque concept et technique, ainsi que des exemples pratiques et des exercices pour aider les lecteurs à appliquer leurs connaissances. livre commence par une présentation des bases de la science des données, y compris l'importance de la prise de décision fondée sur les données, le rôle des analystes de données et l'évolution des technologies dans ce domaine. Ensuite, il approfondit le processus de collecte de données en discutant des différentes sources de données, telles que les bases de données, les API et le scraping Web, ainsi que des méthodes de prétraitement et de nettoyage des données pour l'analyse. s auteurs décrivent également des méthodes de visualisation des données, y compris des diagrammes de diffusion, des histogrammes et des cartes thermiques, et expliquent comment utiliser des bibliothèques Python telles que Matplotlib et Seaborn pour créer ces visualisations. Ils étudient également les techniques de modélisation statistique, telles que la régression linéaire et le regroupement, et les moyens de les mettre en œuvre avec Python. En outre, le livre couvre les algorithmes d'apprentissage automatique, y compris l'apprentissage contrôlé et non contrôlé, ainsi que la façon d'utiliser les bibliothèques Python telles que Scikit-learn et TensorFlow pour mettre en œuvre ces algorithmes.
Ondrej Certik, et al. Introducción a la ciencia de datos Python Approach to Concepts Techniques and Applications 2nd Edition by Dr. Ondrej Certik, et al. es una guía integral para entender los conceptos y métodos de la ciencia de datos utilizando el lenguaje de programación Python. libro cubre diversos aspectos de la ciencia de datos, incluyendo la recopilación de datos, limpieza, visualización, análisis y aprendizaje automático. Contiene una explicación detallada de cada concepto y técnica, así como ejemplos prácticos y ejercicios que ayudan a los lectores a aplicar sus conocimientos. libro comienza con una introducción a los fundamentos de la ciencia de datos, incluyendo la importancia de tomar decisiones basadas en datos, el papel de los especialistas en análisis de datos y la evolución de la tecnología en este campo. A continuación, se profundiza en el proceso de recopilación de datos, discutiendo diferentes fuentes de datos como bases de datos, API y scraping web, así como formas de pre-procesar y limpiar los datos para su análisis. autores también describen técnicas de visualización de datos, incluyendo diagramas de dispersión, histogramas y mapas térmicos, y explican cómo usar bibliotecas Python como Matplotlib y Seaborn para crear estas visualizaciones. También estudian técnicas de modelado estadístico, como la regresión lineal y la clusterización, y cómo implementarlas con Python. Además, el libro cubre algoritmos de aprendizaje automático, incluyendo el aprendizaje controlado e incontrolado, y cómo usar bibliotecas Python como Scikit-learn y TensorFlow para implementar estos algoritmos.
Ondrej Certik, et al. Introduzione alla scienza dei dati Python Approach to Concept Techniche e Applicazioni 2nd Edition by D. Ondrej Certik, et al. è una guida completa per comprendere i concetti e i metodi della scienza dei dati utilizzando il linguaggio di programmazione Python. Il libro comprende diversi aspetti della scienza dei dati, tra cui la raccolta dei dati, la pulizia, la visualizzazione, l'analisi e l'apprendimento automatico. Esso fornisce una spiegazione dettagliata di ogni concetto e tecnica, nonché esempi pratici ed esercizi che aiutano i lettori ad applicare le loro conoscenze. Il libro inizia con la conoscenza dei fondamentali della scienza dei dati, tra cui l'importanza delle decisioni basate sui dati, il ruolo degli esperti di analisi dei dati e l'evoluzione della tecnologia in questo campo. Viene quindi approfondito nel processo di raccolta dei dati, discutendo diverse origini di dati, quali database, API e Web Scraping, nonché le modalità di pre-elaborazione e pulizia dei dati da analizzare. Gli autori descrivono anche i metodi di visualizzazione dei dati, inclusi grafici di dispersione, istogrammi e mappe termiche, e spiegano come utilizzare le librerie Python, come Matplotlib e Seaborn, per creare queste immagini. Studiano anche le tecniche di simulazione statistica, come la regressione lineare e il clustering, e le modalità di implementazione con Python. Inoltre, il libro comprende algoritmi di apprendimento automatico, compreso l'apprendimento controllato e non controllato, e come utilizzare le librerie Python, come Scikit-learn e TensorFlow, per implementare questi algoritmi.
Ondrej Certik, et al. Einführung in die Datenwissenschaft Python Approach to Concepts Techniques and Applications 2. Auflage von Dr. Ondrej Certik, et al. ist ein umfassender itfaden zum Verständnis von Konzepten und Methoden der Datenwissenschaft mit der Programmiersprache Python. Das Buch behandelt verschiedene Aspekte der Datenwissenschaft, einschließlich Datenerfassung, Bereinigung, Visualisierung, Analyse und maschinelles rnen. Es enthält eine detaillierte Erklärung jedes Konzepts und jeder Technik sowie praktische Beispiele und Übungen, die den sern helfen, ihr Wissen anzuwenden. Das Buch beginnt mit einer Einführung in die Grundlagen der Datenwissenschaft, einschließlich der Bedeutung datenbasierter Entscheidungen, der Rolle von Datenwissenschaftlern und der Entwicklung von Technologien in diesem Bereich. Anschließend geht es tiefer in den Datenerfassungsprozess und diskutiert verschiedene Datenquellen wie Datenbanken, APIs und Web-Scraping sowie Möglichkeiten zur Vorverarbeitung und Bereinigung von Daten zur Analyse. Die Autoren beschreiben auch Datenvisualisierungstechniken, einschließlich Streudiagramme, Histogramme und Heatmaps, und erklären, wie Python-Bibliotheken wie Matplotlib und Seaborn verwendet werden, um diese Visualisierungen zu erstellen. e lernen auch statistische Modellierungstechniken wie lineare Regression und Clustering und wie man sie mit Python implementiert. Darüber hinaus behandelt das Buch Algorithmen für maschinelles rnen, einschließlich kontrolliertem und unkontrolliertem rnen, sowie die Verwendung von Python-Bibliotheken wie Scikit-learn und TensorFlow, um diese Algorithmen zu implementieren.
''
Ondrej Certik, vd. Veri Bilimine Giriş Python Kavramlara Yaklaşım Teknikleri ve Uygulamaları 2. Baskı Dr. Ondrej Certik, et al. Python programlama dilini kullanarak veri biliminin kavramlarını ve yöntemlerini anlamak için kapsamlı bir kılavuzdur. Kitap, veri toplama, temizleme, görselleştirme, analiz ve makine öğrenimi dahil olmak üzere veri biliminin çeşitli yönlerini kapsar. Her kavram ve tekniğin ayrıntılı bir açıklamasını, ayrıca okuyucuların bilgilerini uygulamalarına yardımcı olacak pratik örnekler ve alıştırmalar içerir. Kitap, veri odaklı karar vermenin önemi, veri bilimcilerinin rolü ve teknolojinin bu alandaki evrimi de dahil olmak üzere veri biliminin temellerine bir giriş ile başlıyor. Daha sonra veri toplama sürecine girer, veritabanları, API'ler ve web kazıma gibi çeşitli veri kaynaklarını ve analiz için verileri ön işleme ve temizleme yollarını tartışır. Yazarlar ayrıca saçılma diyagramları, histogramlar ve ısı haritaları da dahil olmak üzere veri görselleştirme tekniklerini açıklamakta ve bu görselleştirmeleri oluşturmak için Matplotlib ve Seaborn gibi Python kütüphanelerinin nasıl kullanılacağını açıklamaktadır. Ayrıca doğrusal regresyon ve kümeleme gibi istatistiksel modelleme tekniklerini ve bunları Python kullanarak nasıl uygulayacaklarını da inceliyorlar. Buna ek olarak, kitap denetimli ve denetimsiz öğrenme de dahil olmak üzere makine öğrenme algoritmalarını ve bu algoritmaları uygulamak için Scikit-learn ve TensorFlow gibi Python kütüphanelerinin nasıl kullanılacağını kapsar.
Ondrej Certik, et al.由Dr. Ondrej Certik等人撰寫的Python 數據科學關於概念技術和應用第二版的Approach簡介。是使用Python編程語言理解數據科學概念和方法的綜合指南。該書涵蓋了數據科學的各個方面,包括數據收集,清理,可視化,分析和機器學習。它包含對每個概念和技術的詳細解釋,以及幫助讀者應用其知識的實用示例和練習。該書首先介紹了數據科學的基礎,包括基於數據的決策的重要性,數據分析專家的作用以及該領域的技術演變。然後,他深入研究了數據收集過程,討論了不同的數據源,例如數據庫,API和Web scraping,以及如何預處理和清除用於分析的數據。作者還描述了數據可視化技術,包括散射圖,直方圖和熱圖,並解釋了如何使用Python庫(例如Matplotlib和Seaborn)來創建這些可視化。他們還研究了諸如線性回歸和聚類之類的統計建模方法以及使用Python實現它們的方法。此外,該書涵蓋了機器學習算法,包括受控和非受控學習,以及如何使用諸如Scikit-learn和TensorFlow之類的Python庫來實現這些算法。

You may also be interested in:

Introduction to Statistical and Machine Learning Methods for Data Science
Explorations in Computing An Introduction to Computer Science and Python Programming
Python Programming An Introduction to Computer Science, 3rd Edition
Machine Learning Hero Master Data Science with Python Essentials Machine Learning with Python Hands-On Guide from Beginner to Expert (Mastering the AI Revolution Book 1)
Data Science Bookcamp Five real-world Python projects
Data Science with Machine Learning Python Interview Questions
Learn Data Science Using Python A Quick-Start Guide
Data Science from Scratch First Principles with Python, 2nd Edition
Learn Data Science Using Python A Quick-Start Guide
Scaling Python with Dask: From Data Science to Machine Learning
Machine Learning in Business An Introduction to the World of Data Science Second Edition
Python Data Analysis Transforming Raw Data into Actionable Intelligence with Python|s Data Analysis Capabilities
Python Data Analysis Transforming Raw Data into Actionable Intelligence with Python|s Data Analysis Capabilities
Practical Programming An Introduction to Computer Science Using Python 3.6, 3rd Edition
Data Science in Production Building Scalable Model Pipelines with Python
Scaling Python with Dask From Data Science to Machine Learning (Final)
Scaling Python with Dask From Data Science to Machine Learning (Final)
Marketing Analytics Optimize Your Business with Data Science in R, Python, and SQL
Data Science Fusion Integrating Maths, Python, and Machine Learning
Python Data Science Handbook, 2nd Edition (Early Release)
Football Analytics with Python and R: Learning Data Science Through the Lens of Sports
PYTHON DATA ANALYTICS: Mastering Python for Effective Data Analysis and Visualization (2024 Beginner Guide)
PYTHON FOR DATA ANALYTICS: Mastering Python for Comprehensive Data Analysis and Insights (2023 Guide for Beginners)
Introduction to NFL Analytics with R (Chapman and Hall CRC Data Science Series)
Python For Data Analysis A Beginner|s Guide to Wrangling and Analyzing Data Using Python
Coding with Python Python for Data Analysis and Machine Learning, Let’s Make Data Talk
Geospatial Data Science Essentials: 101 Practical Python Tips and Tricks
Geospatial Data Science Essentials 101 Practical Python Tips and Tricks
Geospatial Data Science Essentials 101 Practical Python Tips and Tricks
Python Data Science Learn the Ethics of Coding in a Day by Taking My Classes
Introduction to Scientific Computing and Data Analysis (Texts in Computational Science and Engineering Book 13)
Python Machine Learning The Ultimate Guide for Beginners to Machine Learning with Python, Programming and Deep Learning, Artificial Intelligence, Neural Networks, and Data Science
Scaling Python with Dask From Data Science to Machine Learning (Sixth Early Release)
Football Analytics with Python & R Learning Data Science Through the Lens of Sports (Final)
Learning Data Science Programming and Statistics Fundamentals Using Python (7th Early Release)
Football Analytics with Python & R Learning Data Science Through the Lens of Sports (Final)
Python Data Science Guidebook With (4in1) Databases MySQL, PоstgrеSQL, SQLitе аnd, MоngоDB
3D Data Science with Python Building Accurate Digital Environments with 3D Point Cloud Workflows (Early Release)
Numerical Python Scientific Computing and Data Science Applications with Numpy, SciPy and Matplotlib, 3rd Edition
3D Data Science with Python Building Accurate Digital Environments with 3D Point Cloud Workflows (Early Release)