BOOKS - Practical Machine Learning with R Tutorials and Case Studies
Practical Machine Learning with R Tutorials and Case Studies - Carsten Lange 2024 PDF CRC Press BOOKS
ECO~15 kg CO²

1 TON

Views
56188

Telegram
 
Practical Machine Learning with R Tutorials and Case Studies
Author: Carsten Lange
Year: 2024
Pages: 369
Format: PDF
File size: 16.5 MB
Language: ENG



Pay with Telegram STARS
Practical Machine Learning with R Tutorials and Case Studies The world we live in today is constantly evolving, and technology plays a crucial role in shaping our future. One of the most significant technological advancements in recent years has been machine learning, which has revolutionized the way we approach problem-solving and decision-making. As a result, it's essential to understand the practical applications of machine learning and how they can be applied to real-world scenarios. This book provides an in-depth look at the process of machine learning and its potential to transform various industries. The book begins by introducing the fundamentals of machine learning, including supervised and unsupervised learning, and the different types of algorithms used in each. It then delves into more advanced topics such as neural networks, deep learning, and natural language processing. The author emphasizes the importance of understanding the underlying principles of machine learning and how they can be applied to real-world problems. Throughout the book, the author uses R tutorials and case studies to illustrate the practical applications of machine learning. These examples provide readers with hands-on experience in implementing machine learning algorithms and understanding their limitations and strengths. The case studies cover a range of industries, from healthcare to finance, demonstrating the versatility and power of machine learning in solving complex problems.
Практическое машинное обучение с R Tutorials and Case Studies Мир, в котором мы живем сегодня, постоянно развивается, и технологии играют решающую роль в формировании нашего будущего. Одним из самых значительных технологических достижений последних лет стало машинное обучение, которое произвело революцию в подходе к решению проблем и принятию решений. В результате важно понимать практические применения машинного обучения и то, как их можно применить к реальным сценариям. В этой книге представлен глубокий взгляд на процесс машинного обучения и его потенциал для трансформации различных отраслей. Книга начинается с представления основ машинного обучения, включая обучение с учителем и без учителя, и различных типов алгоритмов, используемых в каждом из них. Затем он углубляется в более продвинутые темы, такие как нейронные сети, глубокое обучение и обработка естественного языка. Автор подчеркивает важность понимания основополагающих принципов машинного обучения и того, как их можно применить к реальным проблемам. На протяжении всей книги автор использует R-учебники и тематические исследования для иллюстрации практического применения машинного обучения. Эти примеры дают читателям практический опыт реализации алгоритмов машинного обучения и понимания их ограничений и сильных сторон. Тематические исследования охватывают целый ряд отраслей, от здравоохранения до финансов, демонстрируя универсальность и мощь машинного обучения в решении сложных проблем.
Apprentissage machine pratique avec R Tutorials and Case Studies monde dans lequel nous vivons aujourd'hui est en constante évolution et la technologie joue un rôle crucial dans la formation de notre avenir. L'une des avancées technologiques les plus importantes de ces dernières années a été l'apprentissage automatique, qui a révolutionné l'approche de la résolution de problèmes et de la prise de décision. En conséquence, il est important de comprendre les applications pratiques de l'apprentissage automatique et comment elles peuvent être appliquées à des scénarios réels. Ce livre présente une vision approfondie du processus d'apprentissage automatique et de son potentiel pour transformer les différentes industries. livre commence par une présentation des bases de l'apprentissage automatique, y compris l'apprentissage avec et sans professeur, et les différents types d'algorithmes utilisés dans chacun d'eux. Il s'oriente ensuite vers des sujets plus avancés tels que les réseaux neuronaux, l'apprentissage profond et le traitement du langage naturel. L'auteur souligne l'importance de comprendre les principes fondamentaux de l'apprentissage automatique et comment ils peuvent être appliqués aux problèmes réels. Tout au long du livre, l'auteur utilise des manuels R et des études de cas pour illustrer l'application pratique de l'apprentissage automatique. Ces exemples donnent aux lecteurs une expérience pratique de la mise en œuvre d'algorithmes d'apprentissage automatique et de la compréhension de leurs limites et de leurs forces. s études de cas couvrent une gamme d'industries allant de la santé à la finance, démontrant la polyvalence et la puissance de l'apprentissage automatique dans la résolution de problèmes complexes.
Práctica Machine arning con R Tutoriales y Estudios Case mundo en el que vivimos hoy está en constante evolución y la tecnología juega un papel crucial en la configuración de nuestro futuro. Uno de los avances tecnológicos más significativos de los últimos ha sido el aprendizaje automático, que ha revolucionado el enfoque de resolución de problemas y toma de decisiones. Como resultado, es importante comprender las aplicaciones prácticas del aprendizaje automático y cómo se pueden aplicar a escenarios reales. Este libro presenta una visión profunda del proceso de aprendizaje automático y su potencial para transformar diferentes industrias. libro comienza presentando los fundamentos del aprendizaje automático, incluyendo el aprendizaje con y sin profesor, y los diferentes tipos de algoritmos utilizados en cada uno de ellos. Luego profundiza en temas más avanzados como las redes neuronales, el aprendizaje profundo y el procesamiento del lenguaje natural. autor subraya la importancia de comprender los principios fundamentales del aprendizaje automático y cómo se pueden aplicar a los problemas reales. A lo largo del libro, el autor utiliza libros de texto de R y estudios de casos para ilustrar la aplicación práctica del aprendizaje automático. Estos ejemplos proporcionan a los lectores una experiencia práctica para implementar algoritmos de aprendizaje automático y comprender sus limitaciones y fortalezas. estudios de casos abarcan una amplia gama de industrias, desde la salud hasta las finanzas, lo que demuestra la versatilidad y el poder del aprendizaje automático para resolver problemas complejos.
L'apprendimento automatico pratico con R Tutorials and Case Studies Il mondo in cui viviamo oggi è in continua evoluzione e la tecnologia è fondamentale per la formazione del nostro futuro. Uno dei più importanti progressi tecnologici degli ultimi anni è stato l'apprendimento automatico, che ha rivoluzionato l'approccio alla soluzione dei problemi e alla decisione. Di conseguenza, è importante comprendere le applicazioni pratiche dell'apprendimento automatico e come possono essere applicate a scenari reali. Questo libro fornisce una visione approfondita del processo di apprendimento automatico e del suo potenziale per la trasformazione di diversi settori. Il libro inizia presentando le basi dell'apprendimento automatico, compreso l'apprendimento con l'insegnante e senza l'insegnante, e i diversi tipi di algoritmi utilizzati in ciascuno di essi. Poi si approfondisce su temi più avanzati come le reti neurali, l'apprendimento profondo e l'elaborazione del linguaggio naturale. L'autore sottolinea l'importanza di comprendere i principi fondamentali dell'apprendimento automatico e come possono essere applicati ai problemi reali. Per tutto il libro, l'autore utilizza libri di testo R e studi di caso per illustrare l'applicazione pratica dell'apprendimento automatico. Questi esempi forniscono ai lettori un'esperienza pratica nell'implementazione degli algoritmi di apprendimento automatico e nella comprensione dei loro limiti e dei loro punti di forza. Gli studi di caso riguardano diversi settori, dalla sanità alla finanza, dimostrando la versatilità e la potenza dell'apprendimento automatico per affrontare problemi complessi.
Praktisches maschinelles rnen mit R-Tutorials und Fallstudien Die Welt, in der wir heute leben, entwickelt sich ständig weiter und die Technologie gestaltet unsere Zukunft entscheidend mit. Einer der bedeutendsten technologischen Fortschritte der letzten Jahre war das maschinelle rnen, das den Ansatz zur Problemlösung und Entscheidungsfindung revolutioniert hat. Daher ist es wichtig, die praktischen Anwendungen des maschinellen rnens zu verstehen und zu verstehen, wie sie auf reale Szenarien angewendet werden können. Dieses Buch bietet einen tiefen Einblick in den Prozess des maschinellen rnens und sein Potenzial für die Transformation verschiedener Branchen. Das Buch beginnt mit einer Einführung in die Grundlagen des maschinellen rnens, einschließlich des rnens mit und ohne hrer, und der verschiedenen Arten von Algorithmen, die in jedem von ihnen verwendet werden. Dann geht es tiefer in fortgeschrittenere Themen wie neuronale Netze, Deep arning und natürliche Sprachverarbeitung. Der Autor betont, wie wichtig es ist, die grundlegenden Prinzipien des maschinellen rnens zu verstehen und wie sie auf reale Probleme angewendet werden können. Während des gesamten Buches verwendet der Autor R-Tutorials und Fallstudien, um die praktische Anwendung des maschinellen rnens zu veranschaulichen. Diese Beispiele geben den sern praktische Erfahrungen mit der Implementierung von Algorithmen für maschinelles rnen und dem Verständnis ihrer Grenzen und Stärken. Fallstudien decken eine Reihe von Branchen ab, von Gesundheitswesen bis Finanzen, und zeigen die Vielseitigkeit und Macht des maschinellen rnens bei der Lösung komplexer Probleme.
Hands-on Machine arning with R Tutorials and Case Studies העולם בו אנו חיים כיום מתפתח ללא הרף, והטכנולוגיה ממלאת תפקיד קריטי בעיצוב עתידנו. אחת ההתקדמות הטכנולוגית המשמעותית ביותר בשנים האחרונות היא למידת מכונה, שחוללה מהפכה בגישה לפתרון בעיות וקבלת החלטות. כתוצאה מכך, חשוב להבין את היישומים המעשיים של למידת מכונה וכיצד ניתן ליישם אותם על תרחישים בעולם האמיתי. הספר הזה מספק מבט עמוק על תהליך למידת המכונה והפוטנציאל שלה לשנות תעשיות שונות. הספר מתחיל בהצגת היסודות של למידת מכונה, כולל למידה מפוקחת ובלתי מפוקחת, וסוגי האלגוריתמים השונים המשמשים כל אחד. לאחר מכן הוא מתעמק בנושאים מתקדמים יותר כגון רשתות עצביות, למידה עמוקה ועיבוד שפה טבעית. המחבר מדגיש את החשיבות של הבנת העקרונות הבסיסיים של למידת מכונה וכיצד ניתן ליישם אותם לבעיות אמיתיות. לאורך הספר, המחבר משתמש בספרי לימוד R ובמחקרי מקרה כדי להמחיש את היישומים המעשיים של למידת מכונה. דוגמאות אלו מעניקות לקוראים ניסיון רב-פעמי ביישום אלגוריתמי למידת מכונה והבנת המגבלות והחוזקות שלהם. מחקרי מקרה משתרעים על פני מגוון תעשיות, החל בבריאות וכלה במימון, ומדגימים את הרב-גוניות והכוח של למידת מכונה בפתרון בעיות מורכבות.''
R Öğreticiler ve Vaka Çalışmaları ile Uygulamalı Makine Öğrenimi Bugün yaşadığımız dünya sürekli gelişiyor ve teknoloji geleceğimizi şekillendirmede kritik bir rol oynuyor. Son yılların en önemli teknolojik gelişmelerinden biri, problem çözme ve karar verme yaklaşımında devrim yaratan makine öğrenimi olmuştur. Sonuç olarak, makine öğreniminin pratik uygulamalarını ve bunların gerçek dünya senaryolarına nasıl uygulanabileceğini anlamak önemlidir. Bu kitap, makine öğrenme sürecine ve farklı endüstrileri dönüştürme potansiyeline derinlemesine bir bakış sunuyor. Kitap, denetlenen ve denetlenmeyen öğrenme ve her birinde kullanılan farklı algoritma türleri de dahil olmak üzere makine öğreniminin temellerini sunarak başlar. Daha sonra sinir ağları, derin öğrenme ve doğal dil işleme gibi daha gelişmiş konulara girer. Yazar, makine öğreniminin temel ilkelerini ve bunların gerçek problemlere nasıl uygulanabileceğini anlamanın önemini vurgulamaktadır. Kitap boyunca yazar, makine öğreniminin pratik uygulamalarını göstermek için R-ders kitaplarını ve vaka çalışmalarını kullanır. Bu örnekler, okuyuculara makine öğrenme algoritmalarını uygulama ve sınırlamalarını ve güçlü yönlerini anlama konusunda uygulamalı deneyim kazandırır. Vaka çalışmaları, sağlık hizmetlerinden finansa kadar bir dizi endüstriyi kapsar ve karmaşık problemlerin çözümünde makine öğreniminin çok yönlülüğünü ve gücünü gösterir.
التعلم الآلي العملي مع دروس R ودراسات الحالة يتطور العالم الذي نعيش فيه اليوم باستمرار، وتلعب التكنولوجيا دورًا مهمًا في تشكيل مستقبلنا. كان التعلم الآلي أحد أهم التطورات التكنولوجية في السنوات الأخيرة، مما أحدث ثورة في نهج حل المشكلات وصنع القرار. نتيجة لذلك، من المهم فهم التطبيقات العملية للتعلم الآلي وكيف يمكن تطبيقها على سيناريوهات العالم الحقيقي. يقدم هذا الكتاب نظرة عميقة على عملية التعلم الآلي وإمكانية تغيير الصناعات المختلفة. يبدأ الكتاب بتقديم أساسيات التعلم الآلي، بما في ذلك التعلم الخاضع للإشراف وغير الخاضع للإشراف، والأنواع المختلفة من الخوارزميات المستخدمة في كل منها. ثم يتعمق في موضوعات أكثر تقدمًا مثل الشبكات العصبية والتعلم العميق ومعالجة اللغة الطبيعية. يؤكد المؤلف على أهمية فهم المبادئ الأساسية للتعلم الآلي وكيف يمكن تطبيقها على المشاكل الحقيقية. في جميع أنحاء الكتاب، يستخدم المؤلف الكتب المدرسية ودراسات الحالة لتوضيح التطبيقات العملية للتعلم الآلي. تمنح هذه الأمثلة القراء تجربة عملية في تنفيذ خوارزميات التعلم الآلي وفهم قيودهم ونقاط قوتهم. تشمل دراسات الحالة مجموعة من الصناعات، من الرعاية الصحية إلى التمويل، مما يدل على تنوع وقوة التعلم الآلي في حل المشكلات المعقدة.
實用的機器學習與R Tutorials and Case Studies我們今天生活的世界不斷發展,技術在塑造我們的未來方面發揮著至關重要的作用。近來最重要的技術進步之一是機器學習,它徹底改變了解決問題和決策的方法。因此,了解機器學習的實際應用以及如何將其應用於真實場景非常重要。本書深入探討了機器學習過程及其對不同行業轉型的潛力。這本書首先介紹了機器學習的基本知識,包括與老師和老師一起學習,以及每種算法中使用的不同類型的算法。然後,他深入研究了更高級的主題,例如神經網絡,深度學習和自然語言處理。作者強調了理解機器學習的基本原理以及如何將其應用於實際問題的重要性。在整個書中,作者使用R教科書和案例研究來說明機器學習的實際應用。這些示例為讀者提供了實現機器學習算法並了解其局限性和優勢的實際經驗。案例研究涵蓋了從醫療保健到金融的各種行業,展示了機器學習在解決復雜問題方面的多功能性和力量。

You may also be interested in:

Cracking The Machine Learning Interview 225 Machine Learning Interview Questions with Solutions
Mastering Classification Algorithms for Machine Learning: Learn how to apply Classification algorithms for effective Machine Learning solutions (English Edition)
Machine Learning With Python Programming 2023 A Beginners Guide The Definitive Guide to Mastering Machine Learning in Python and a Problem-Guide Solver to Creating Real-World Intelligent Systems
Machine Learning With Python Programming 2023 A Beginners Guide The Definitive Guide to Mastering Machine Learning in Python and a Problem-Guide Solver to Creating Real-World Intelligent Systems
Python for Data Science A Practical Guide to Master Python Programming and System Administration. Discover The Essentials of Machine Learning and Artificial Intelligent Using Python Code
Practical Full Stack Machine Learning A Guide to Build Reliable, Reusable, and Production-Ready Full Stack ML Solutions
Machine Learning in Microservices: Productionizing microservices architecture for machine learning solutions
Deep Machine Learning Complete Tips and Tricks to Deep Machine Learning
Machine Learning in Trading: Step by step implementation of Machine Learning models
Linear Algebra And Optimization With Applications To Machine Learning - Volume II Fundamentals of Optimization Theory with Applications to Machine Learning
Statistics, Data Mining, and Machine Learning in Astronomy: A Practical Python Guide for the Analysis of Survey Data (Princeton Series in Modern Observational Astronomy, 1)
Python Machine Learning The Ultimate Beginners’ Guide for Building Intelligent Systems with Python, Raspberry Pi, and TensorFlow. Includes Practical Step-by-Step Techniques and Exercises
Mastering ChatGPT and Google Colab for Machine Learning Automate AI Workflows and Fast-Track Your Machine Learning Tasks with the Power of ChatGPT, Google Colab, and Python
Learn Python Programming for Beginners: The Best Step-by-Step Guide for Coding with Python, Great for Kids and Adults. Includes Practical Exercises on Data Analysis, Machine Learning and More.
Python Machine Learning Discover the Essentials of Machine Learning, Data Analysis, Data Science, Data Mining and Artificial Intelligence Using Python Code with Python Tricks
Hands-on Supervised Learning with Python Learn How to Solve Machine Learning Problems with Supervised Learning Algorithms
Python for Beginners A Step by Step Guide to Python Programming, Data Science, and Predictive Model. A Practical Introduction to Machine Learning with Python
Practical Data Science with Jupyter Explore Data Cleaning, Pre-processing, Data Wrangling, Feature Engineering and Machine Learning using Python and Jupyter
Mastering Excel VBA and Machine Learning A Complete, Step-by-Step Guide To Learn and Master Excel VBA and Machine Learning From Scratch
Signal Processing and Machine Learning for Brain-Machine Interfaces
Machine Learning with Python Advanced Guide in Machine Learning with Python
Machine Learning with Python 3 in 1 Beginners Guide + Step by Step Methods + Advanced Methods and Strategies to Learn Machine Learning with Python
Machine Learning with Neural Networks An In-depth Visual Introduction with Python Make Your Own Neural Network in Python A Simple Guide on Machine Learning with Neural Networks
Machine Learning with Python A Step-By-Step Guide to Learn and Master Python Machine Learning
Bio-inspired Algorithms in Machine Learning and Deep Learning for Disease Detection
Learning Kernel Classifiers: Theory and Algorithms (Adaptive Computation and Machine Learning)
Machine Learning and Deep Learning Techniques in Wireless and Mobile Networking Systems
Machine Learning Master Supervised and Unsupervised Learning Algorithms with Real Examples
Artificial Intelligence and Machine Learning Foundations Learning from experience, 2nd Edition
Artificial Intelligence and Machine Learning Foundations Learning from experience, 2nd Edition
Learning TensorFlow.js Powerful Machine Learning in javascript
Disease Prediction using Machine Learning, Deep Learning and Data Analytics
Disease Prediction using Machine Learning, Deep Learning and Data Analytics
Design of Intelligent Applications using Machine Learning and Deep Learning Techniques
Federated Learning (Synthesis Lectures on Artificial Intelligence and Machine Learning)
Building Intelligent Systems Using Machine Learning and Deep Learning Security, Applications and Its Challenges
Building Intelligent Systems Using Machine Learning and Deep Learning Security, Applications and Its Challenges
Adversarial Machine Learning: Attack Surfaces, Defence Mechanisms, Learning Theories in Artificial Intelligence
Elements of Causal Inference: Foundations and Learning Algorithms (Adaptive Computation and Machine Learning series)
Machine Learning: Master Supervised and Unsupervised Learning Algorithms with Real Examples (English Edition)