BOOKS - Data-Driven Modelling and Predictive Analytics in Business and Finance
Data-Driven Modelling and Predictive Analytics in Business and Finance - Alex Khang, Rashmi Gujrati, Hayri Uygun, R.K. Tailor, Sanjaya Singh Gaur 2025 PDF CRC Press BOOKS
ECO~18 kg CO²

1 TON

Views
10748

Telegram
 
Data-Driven Modelling and Predictive Analytics in Business and Finance
Author: Alex Khang, Rashmi Gujrati, Hayri Uygun, R.K. Tailor, Sanjaya Singh Gaur
Year: 2025
Pages: 443
Format: PDF
File size: 18.9 MB
Language: ENG



Pay with Telegram STARS
The book "Data-Driven Modeling and Predictive Analytics in Business and Finance" presents a comprehensive overview of data-driven modeling and predictive analytics in business and finance, providing readers with the tools and techniques needed to make informed decisions in today's fast-paced data-driven world. The book covers topics such as data mining, machine learning, statistical modeling, and predictive analytics, and provides real-world examples of how these techniques are used in various industries. The book begins by discussing the importance of data-driven modeling and predictive analytics in business and finance, highlighting their growing importance in today's data-driven world. It then delves into the fundamentals of data mining, including data types, data preprocessing, and data visualization, before moving on to more advanced topics such as machine learning and statistical modeling. Throughout the book, the author emphasizes the need for a personal paradigm for perceiving the technological process of developing modern knowledge, arguing that this is essential for survival in a rapidly changing world.
В книге «Data-Driven Modeling and Predictive Analytics in Business and Finance» (Моделирование и прогнозная аналитика на основе данных в бизнесе и финансах) представлен всесторонний обзор моделирования и прогнозной аналитики на основе данных в бизнесе и финансах, предоставляющий читателям инструменты и методы, необходимые для принятия обоснованных решений в современном быстро меняющемся мире данных. В книге рассматриваются такие темы, как интеллектуальный анализ данных, машинное обучение, статистическое моделирование и предиктивная аналитика, а также приводятся реальные примеры того, как эти методы используются в различных отраслях. Книга начинается с обсуждения важности моделирования на основе данных и прогнозной аналитики в бизнесе и финансах, подчеркивая их растущую важность в современном мире на основе данных. Затем он углубляется в основы интеллектуального анализа данных, включая типы данных, предварительную обработку данных и визуализацию данных, прежде чем перейти к более продвинутым темам, таким как машинное обучение и статистическое моделирование. На протяжении всей книги автор подчёркивает необходимость личной парадигмы восприятия технологического процесса развития современного знания, утверждая, что это необходимо для выживания в быстро меняющемся мире.
''

You may also be interested in:

Programming Skills for Data Science Start Writing Code to Wrangle, Analyze, and Visualize Data with R (Addison-Wesley Data & Analytics Series) 1st Edition - Fiunal
Data Analytics for Absolute Beginners: Make Decisions Using Every Variable: (Introduction to Data, Data Visualization, Business Intelligence and Machine … Science, Python and Statistics for Begi
Machine Learning with Spark and Python Essential Techniques for Predictive Analytics Second Edition
Applications of Emerging Technologies and AI ML Algorithms: International Conference on Data Analytics in Public Procurement and Supply Chain (ICDAPS2022) (Asset Analytics)
Big Data Governance Modern Data Management Principles for Hadoop, NoSQL & Big Data Analytics
Machine Learning with Dynamics 365 and Power Platform The Ultimate Guide to Apply Predictive Analytics
Data Mesh Delivering Data-Driven Value at Scale (Third Early Release)
Data Visualisation A Handbook for Data Driven Design 2nd Edition
Business Intelligence An Essential Beginner’s Guide to BI, Big Data, Artificial Intelligence, Cybersecurity, Machine Learning, Data Science, Data Analytics, Social Media and Internet Marketing
Data Universe Organizational Insights with Python Embracing Data Driven Decision Making
Data Mesh Principles, Patterns, Architecture, and Strategies for Data-Driven Decision Making
Data Mesh Principles, Patterns, Architecture, and Strategies for Data-Driven Decision Making
Behavioral Data Analysis with R and Python: Customer-Driven Data for Real Business Results
Behavioral Data Analysis with R and Python Customer-Driven Data for Real Business Results
Data Universe: Organizational Insights with Python: Embracing Data Driven Decision Making
Data Universe Organizational Insights with Python Embracing Data Driven Decision Making
Data Analytics and Machine Learning: Navigating the Big Data Landscape (Studies in Big Data, 145)
Data Analytics and AI (Data Analytics Applications)
Core Data for iOS Developing Data-Driven Applications for the iPad, iPhone, and iPod touch
Big Data and Hadoop Fundamentals, tools, and techniques for data-driven success - 2nd Edition
Big Data and Hadoop: Fundamentals, tools, and techniques for data-driven success - 2nd Edition
Big Data and Hadoop Fundamentals, tools, and techniques for data-driven success - 2nd Edition
Data Driven Harnessing Data and AI to Reinvent Customer Engagement
Predictive Analytics for the Modern Enterprise A Practitioner|s Guide to Designing and Implementing Solutions (Final Release)
Predictive Analytics for the Modern Enterprise A Practitioner’s Guide to Designing and Implementing Solutions (Fourth Early Release)
Predictive Analytics for the Modern Enterprise A Practitioner|s Guide to Designing and Implementing Solutions (Final Release)
Big Data Management Data Governance Principles for Big Data Analytics, 1st Edition
Data Mesh: Delivering Data-Driven Value at Scale
Data Strategy: How to Profit from a World of Big Data, Analytics and the Internet of Things
Analytics in a Big Data World The Essential Guide to Data Science and its Applications
Data Analytics for Absolute Beginners A Deconstructed Guide to Data Literacy, Second Edition
IBM Cloud Pak for Data: An enterprise platform to operationalize data, analytics, and AI
Real-Time Data Analytics for Large Scale Sensor Data Volume Six
Data Pipelines Pocket Reference Moving and Processing Data for Analytics (Final)
Agile Data Science Building Data Analytics Applications with Hadoop
Data Analytics and Machine Learning Navigating the Big Data Landscape
Data Analytics and Machine Learning Navigating the Big Data Landscape
Multi-dimensional Urban Sensing Using Crowdsensing Data (Data Analytics)
Agile Data Science 2.0 Building Full-Stack Data Analytics Applications with Spark
Tableau for Salesforce Visualise data and generate insights with the leading platforms for data analytics