BOOKS - Data Science Fundamentals with R, Python, and Open Data
Data Science Fundamentals with R, Python, and Open Data - Marco Cremonini 2024 PDF | EPUB Wiley BOOKS
ECO~18 kg CO²

1 TON

Views
76970

Telegram
 
Data Science Fundamentals with R, Python, and Open Data
Author: Marco Cremonini
Year: 2024
Pages: 480
Format: PDF | EPUB
File size: 12.8 MB
Language: ENG



Pay with Telegram STARS
Book Description: In this book, we will explore the fundamentals of data science using R, Python, and open data. We will start by understanding the concept of data science and its importance in today's world. We will then delve into the technical aspects of data analysis, including data cleaning, visualization, and statistical modeling. We will also discuss the importance of open data and how it can be used to gain insights into various fields such as healthcare, finance, and education. Finally, we will learn how to work with big data and how to use machine learning algorithms to solve real-world problems. Throughout the book, we will use practical examples and case studies to illustrate the concepts discussed. The book is designed to be accessible to readers who may not have prior experience in data science, but want to learn more about this exciting field. By the end of the book, readers will have a solid understanding of data science principles and be able to apply them to real-world problems. The Evolution of Technology and Its Impact on Humanity Technology has come a long way since the invention of the wheel. From simple tools made of stone and wood to complex machines that can perform tasks with precision and speed, technology has evolved at an incredible pace.
В этой книге мы рассмотрим основы науки о данных с использованием R, Python и открытых данных. Начнем с понимания концепции науки о данных и ее важности в современном мире. Затем мы углубимся в технические аспекты анализа данных, включая очистку данных, визуализацию и статистическое моделирование. Мы также обсудим важность открытых данных и то, как их можно использовать для получения информации в различных областях, таких как здравоохранение, финансы и образование. Наконец, мы научимся работать с большими данными и использовать алгоритмы машинного обучения для решения реальных задач. На протяжении всей книги мы будем использовать практические примеры и тематические исследования для иллюстрации обсуждаемых концепций. Книга разработана, чтобы быть доступной для читателей, которые могут не иметь предшествующего опыта в науке о данных, но хотят узнать больше об этой захватывающей области. К концу книги читатели получат твердое понимание принципов науки о данных и смогут применять их к реальным проблемам. Эволюция технологии и ее влияние на человечество Технология прошла долгий путь с момента изобретения колеса. От простых инструментов из камня и дерева до сложных машин, способных выполнять задачи с точностью и скоростью, технологии развивались невероятными темпами.
''

You may also be interested in:

Data Science from Scratch First Principles with Python Second Edition
Neural Data Science A Primer with MATLAB® and Python™
Machine Learning Hero Master Data Science with Python Essentials Machine Learning with Python Hands-On Guide from Beginner to Expert (Mastering the AI Revolution Book 1)
Data Science from Scratch First Principles with Python, 2nd Edition
Data Science with Machine Learning Python Interview Questions
Learn Data Science Using Python A Quick-Start Guide
Introduction to Data Science with Python Basics of Numpy and Pandas
Scaling Python with Dask: From Data Science to Machine Learning
Learn Data Science Using Python A Quick-Start Guide
Data Science Bookcamp Five real-world Python projects
Python Data Analysis Transforming Raw Data into Actionable Intelligence with Python|s Data Analysis Capabilities
Python Data Analysis Transforming Raw Data into Actionable Intelligence with Python|s Data Analysis Capabilities
Scaling Python with Dask From Data Science to Machine Learning (Final)
Python Data Science Handbook, 2nd Edition (Early Release)
Marketing Analytics Optimize Your Business with Data Science in R, Python, and SQL
Data Science Fusion Integrating Maths, Python, and Machine Learning
Scaling Python with Dask From Data Science to Machine Learning (Final)
Football Analytics with Python and R: Learning Data Science Through the Lens of Sports
Data Science in Production Building Scalable Model Pipelines with Python
PYTHON DATA ANALYTICS: Mastering Python for Effective Data Analysis and Visualization (2024 Beginner Guide)
PYTHON FOR DATA ANALYTICS: Mastering Python for Comprehensive Data Analysis and Insights (2023 Guide for Beginners)
Coding with Python Python for Data Analysis and Machine Learning, Let’s Make Data Talk
Python For Data Analysis A Beginner|s Guide to Wrangling and Analyzing Data Using Python
Python Data Science Learn the Ethics of Coding in a Day by Taking My Classes
Geospatial Data Science Essentials: 101 Practical Python Tips and Tricks
Geospatial Data Science Essentials 101 Practical Python Tips and Tricks
Geospatial Data Science Essentials 101 Practical Python Tips and Tricks
Python Machine Learning The Ultimate Guide for Beginners to Machine Learning with Python, Programming and Deep Learning, Artificial Intelligence, Neural Networks, and Data Science
Football Analytics with Python & R Learning Data Science Through the Lens of Sports (Final)
Football Analytics with Python & R Learning Data Science Through the Lens of Sports (Final)
Scaling Python with Dask From Data Science to Machine Learning (Sixth Early Release)
Introduction to Data Science A Python Approach to Concepts, Techniques and Applications 2nd Edition
Introduction to Data Science A Python Approach to Concepts, Techniques and Applications 2nd Edition
Python Data Science Guidebook With (4in1) Databases MySQL, PоstgrеSQL, SQLitе аnd, MоngоDB
Machine Learning and Data Science Blueprints for Finance: From Building Trading Strategies to Robo-Advisors Using Python
Numerical Python Scientific Computing and Data Science Applications with Numpy, SciPy and Matplotlib, 3rd Edition
3D Data Science with Python Building Accurate Digital Environments with 3D Point Cloud Workflows (Early Release)
3D Data Science with Python Building Accurate Digital Environments with 3D Point Cloud Workflows (Early Release)
Data Science from Scratch with Python Concepts and Practices with NumPy, Pandas, Matplotlib, Scikit-Learn and Keras
The Decision Maker|s Handbook to Data Science AI and Data Science for Non-Technical Executives, Managers, and Founders, 3rd Edition