BOOKS - AI and Data Engineering Solutions for Effective Marketing
AI and Data Engineering Solutions for Effective Marketing - Lhoussaine Alla, Aziz Hmioui, Badr Bentalha 2024 PDF | EPUB IGI Global BOOKS
ECO~19 kg CO²

2 TON

Views
5586

Telegram
 
AI and Data Engineering Solutions for Effective Marketing
Author: Lhoussaine Alla, Aziz Hmioui, Badr Bentalha
Year: 2024
Pages: 520
Format: PDF | EPUB
File size: 26.4 MB
Language: ENG



Pay with Telegram STARS
The book "AI and Data Engineering Solutions for Effective Marketing" provides a comprehensive overview of the current state of artificial intelligence (AI) and data engineering solutions in marketing, highlighting their potential benefits and challenges. It covers topics such as machine learning, natural language processing, computer vision, and predictive analytics, and how they can be applied to various marketing strategies. The book also explores the ethical implications of using AI and data engineering in marketing, including privacy concerns and biases. The book begins by discussing the history and development of AI and data engineering, from their early beginnings to the present day. It then delves into the various applications of AI and data engineering in marketing, including personalization, segmentation, and customer profiling. The book also examines the role of AI in content creation, social media monitoring, and influencer marketing. One of the key themes of the book is the need for marketers to understand the technological process of developing modern knowledge and its impact on society. The author argues that this understanding is essential for effective marketing and for ensuring that AI and data engineering are used responsibly and ethically. The book emphasizes the importance of developing a personal paradigm for perceiving the technological process of developing modern knowledge, which can help individuals and organizations navigate the rapidly changing landscape of technology and marketing.
Книга «Решения для искусственного интеллекта и инженерии данных для эффективного маркетинга» содержит всесторонний обзор текущего состояния искусственного интеллекта (ИИ) и решений для инженерии данных в маркетинге, подчеркивая их потенциальные преимущества и проблемы. Он охватывает такие темы, как машинное обучение, обработка естественного языка, компьютерное зрение и предиктивная аналитика, а также то, как их можно применить к различным маркетинговым стратегиям. В книге также рассматриваются этические последствия использования ИИ и инженерии данных в маркетинге, включая проблемы конфиденциальности и предубеждения. Книга начинается с обсуждения истории и развития ИИ и инженерии данных, от их раннего начала до наших дней. Затем он углубляется в различные приложения искусственного интеллекта и инженерии данных в маркетинге, включая персонализацию, сегментацию и профилирование клиентов. В книге также рассматривается роль ИИ в создании контента, мониторинге социальных сетей и маркетинге влияния. Одна из ключевых тем книги - необходимость понимания маркетологами технологического процесса развития современного знания и его влияния на общество. Автор утверждает, что это понимание имеет важное значение для эффективного маркетинга и для обеспечения того, чтобы ИИ и инженерия данных использовались ответственно и этично. В книге подчеркивается важность выработки личностной парадигмы восприятия технологического процесса развития современных знаний, которая может помочь отдельным лицам и организациям ориентироваться в быстро меняющемся ландшафте технологий и маркетинга.
''

You may also be interested in:

Deciphering Data Architectures Choosing Between a Modern Data Warehouse, Data Fabric, Data Lakehouse, and Data Mesh
Fundamentals of Data Engineering
Smart Cities IoT Technologies, Big Data Solutions, Cloud Platforms, and Cybersecurity Techniques
Smart Cities IoT Technologies, Big Data Solutions, Cloud Platforms, and Cybersecurity Techniques
Software Engineering for Data Scientists
Engineering Data Analysis with MATLAB
Ultimate Data Engineering with Databricks
Data Warehouse Requirements Engineering
Software Engineering and Data Science
Machine Learning Design Patterns: Solutions to Common Challenges in Data Preparation, Model Building, and MLOps
Data Wrangling with SQL: A hands-on guide to manipulating, wrangling, and engineering data using SQL
Artificial intelligence and Multimedia Data Engineering
Snowflake Data Engineering (Final Release)
Artificial Intelligence and Multimedia Data Engineering
Data Mining and Analysis in the Engineering Field
Data Mining Applications in Engineering and Medicine
Artificial Intelligence and Multimedia Data Engineering
Perspectives on Data Science for Software Engineering
Snowflake Data Engineering (Final Release)
Machine Learning Design Patterns Solutions to Common Challenges in Data Preparation, Model Building, and MLOps, First Edition
TIBCO Spotfire: A Comprehensive Primer: Building enterprise-grade data analytics and visualization solutions, 2nd Edition
Green Software Engineering: Exploring Green Technology for Sustainable IT Solutions
Wide-Area Data Network Performance Engineering
Feature Engineering for Machine Learning and Data Analytics
Applications of Data Mining in Engineering, Management and Medicine
Handbook of Data Science Approaches for Biomedical Engineering
Data Science and Machine Learning Applications in Subsurface Engineering
Data Science and Machine Learning Applications in Subsurface Engineering
Data Science for Civil Engineering: A Beginner|s Guide
Data Communication & Computer Networks Engineering Handbook
Data Analytics Systems Engineering - Cybersecurity - Project Management
Quantitative Methods of Data Analysis for the Physical Sciences and Engineering
Cyber-Risk Informatics Engineering Evaluation with Data Science
Basic Experimental Strategies and Data Analysis for Science and Engineering
Software Engineering for Data Scientists: From Notebooks to Scalable Systems
Data Science and Machine Learning Applications in Subsurface Engineering
AI for Big Data-Based Engineering Applications from Security Perspectives
Information-Driven Machine Learning Data Science as an Engineering Discipline
Mathematical Gnostics: Advanced Data Analysis for Research and Engineering Practice
Data Analytics for Drilling Engineering: Theory, Algorithms, Experiments, Software