BOOKS - Data Science for Decision Makers Using Analytics and Case Studies
Data Science for Decision Makers Using Analytics and Case Studies - Erik Herman 2025 PDF | EPUB Mercury Learning and Information BOOKS
ECO~12 kg CO²

1 TON

Views
74671

Telegram
 
Data Science for Decision Makers Using Analytics and Case Studies
Author: Erik Herman
Year: 2025
Pages: 197
Format: PDF | EPUB
File size: 20.6 MB
Language: ENG



Pay with Telegram STARS
Book Description: 'Data Science for Decision Makers Using Analytics and Case Studies' is a comprehensive guide that provides readers with the tools and techniques they need to make data-driven decisions. The book covers topics such as data analytics, machine learning, and case studies, providing readers with a solid understanding of how to apply these concepts in real-world scenarios. It also explores the ethical implications of data science and its impact on society, making it an essential read for anyone looking to stay ahead of the curve in this rapidly evolving field. The book begins by introducing the concept of data science and its importance in today's world. It explains how technology has revolutionized the way we live, work, and communicate, and how data science plays a crucial role in this technological evolution. The author emphasizes the need to understand the process of technology evolution and its potential impact on humanity, highlighting the significance of developing a personal paradigm for perceiving the technological process of developing modern knowledge. This paradigm is essential for survival in a warring state where technology is constantly changing and evolving. The book then delves into the basics of data analytics, explaining how to collect, analyze, and interpret data to make informed decisions.
«Наука о данных для лиц, принимающих решения, с использованием аналитики и тематических исследований» - это всеобъемлющее руководство, которое предоставляет читателям инструменты и методы, необходимые для принятия решений на основе данных. Книга охватывает такие темы, как аналитика данных, машинное обучение и тематические исследования, предоставляя читателям твердое понимание того, как применять эти концепции в реальных сценариях. В нем также исследуются этические последствия науки о данных и ее влияние на общество, что делает его важным чтением для всех, кто хочет опережать конкурентов в этой быстро развивающейся области. Книга начинается с введения концепции науки о данных и её важности в современном мире. Он объясняет, как технологии произвели революцию в том, как мы живем, работаем и общаемся, и как наука о данных играет решающую роль в этой технологической эволюции. Автор подчеркивает необходимость понимания процесса эволюции технологий и его потенциального влияния на человечество, подчеркивая значимость выработки личностной парадигмы восприятия технологического процесса развития современных знаний. Эта парадигма необходима для выживания в воюющем государстве, где технологии постоянно меняются и развиваются. Затем книга углубляется в основы аналитики данных, объясняя, как собирать, анализировать и интерпретировать данные для принятия обоснованных решений.
''

You may also be interested in:

Data Engineering and Data Science Concepts and Applications
Data Science Fundamentals with R, Python, and Open Data
Data Science and Data Analytics Opportunities and Challenges
Data Engineering and Data Science: Concepts and Applications
Data Science Fundamentals with R, Python, and Open Data
Data Science Fundamentals with R, Python, and Open Data
Probability and statistics for data science math + R + data
R Programming for Data Science A comprehensive guide to R programming for Data Science
R Programming for Data Science A comprehensive guide to R programming for Data Science
Data-Driven Clinical Decision-Making Using Deep Learning in Imaging
From Data to Decisions: A Practical Guide to Implementing Modern Decision Intelligence
Business Analytics Data Analysis and Decision Making, Seventh Edition
Data Driven Decision Making using Analytics (Computational Intelligence Techniques)
Data-Driven Clinical Decision-Making Using Deep Learning in Imaging
Information for Efficient Decision Making Big Data, Blockchain and Relevance
Advanced Data Science and Analytics with Python (Chapman & Hall/CRC Data Mining and Knowledge Discovery Series)
Practical Data Analytics for BFSI Leveraging Data Science for Driving Decisions in Banking, Financial Services, and Insurance Operations
Frame Theory in Data Science (Advances in Science, Technology and Innovation)
Statistical Methods for Materials Science The Data Science of Microstructure Characterization
Data Science An Emerging Trend in Engineering, Science & Technology
Data Science An Emerging Trend in Engineering, Science & Technology
Теоретический минимум по Computer Science. Сети, криптография и data science
Econometric Python Harnessing Data Science for Economic Analysis The Science of Pythonomics in 2024
Econometric Python: Harnessing Data Science for Economic Analysis: The Science of Pythonomics in 2024
Python for Beginners Start Right Now to Learn Computer Programming with the Best Crash Course. Improve your Skills with Machine Learning, Data Analysis and Data Science
Decision-Driven Analytics: Leveraging Human Intelligence to Unlock the Power of Data
Graph Data Science with Python and Neo4j: Hands-on Projects on Python and Neo4j Integration for Data Visualization and Analysis Using Graph Data … Enterprise Strategies (English Edition)
Learning from the Science of Cognition and Perception for Decision Making
Beginning Azure Cognitive Services: Data-Driven Decision Making Through Artificial Intelligence
The CFO in Pole Position: Leading next-generation decision-making in a data-driven organization
Smarter Decisions – The Intersection of Internet of Things and Decision Science
Optimization and Computing using Intelligent Data-Driven Approaches for Decision-Making Artificial Intelligence Applications
Optimization and Computing using Intelligent Data-Driven Approaches for Decision-Making Artificial Intelligence Applications
Ultimate Parallel and Distributed Computing with Julia For Data Science Excel in Data Analysis, Statistical Modeling and Machine Learning by Leveraging MLBase.jl and MLJ.jl to Optimize Workflows
Ultimate Parallel and Distributed Computing with Julia For Data Science Excel in Data Analysis, Statistical Modeling and Machine Learning by Leveraging MLBase.jl and MLJ.jl to Optimize Workflows
Psychology of Decision Making in Legal, Health Care and Science Settings
The Family Firm: A Data-Driven Guide to Better Decision Making in the Early School Years (The ParentData Series)
Artificial Intelligence in Prescriptive Analytics Innovations in Decision Analysis, Intelligent Optimization, and Data-Driven Decisions
Ultimate Parallel and Distributed Computing with Julia For Data Science: Excel in Data Analysis, Statistical Modeling and Machine Learning by … to optimize workflows (English Edition)
Thinking The New Science of Decision-Making, Problem-Solving, and Prediction in Life and Markets