BOOKS - Linear Algebra for Data Science, Machine Learning, and Signal Processing
Linear Algebra for Data Science, Machine Learning, and Signal Processing - Jeff Fessler, Raj Rao Nadakuditi 2024 PDF Cambridge University Press BOOKS
ECO~18 kg CO²

1 TON

Views
92717

Telegram
 
Linear Algebra for Data Science, Machine Learning, and Signal Processing
Author: Jeff Fessler, Raj Rao Nadakuditi
Year: 2024
Pages: 451
Format: PDF
File size: 29.2 MB
Language: ENG



Pay with Telegram STARS
The book "Linear Algebra for Data Science Machine Learning and Signal Processing" provides an introduction to linear algebra and its applications in data science, machine learning, and signal processing. It covers topics such as vector spaces, linear transformations, eigenvectors, and singular value decomposition, and demonstrates how these concepts can be used to solve real-world problems in data analysis and machine learning. The book also discusses the history and development of linear algebra, highlighting its importance in shaping our understanding of technology and its role in driving innovation and progress. Book Description: Title: Linear Algebra for Data Science Machine Learning and Signal Processing Author: Jeff Fessler, Raj Rao Nadakuditi 2024 451 Cambridge University Press Genre: Non-Fiction, Technology, Mathematics Audience: Students, Researchers, Professionals in Data Science, Machine Learning, and Signal Processing Summary: This book offers a comprehensive introduction to linear algebra and its applications in data science, machine learning, and signal processing.
Книга «Линейная алгебра для машинного обучения науки о данных и обработки сигналов» содержит введение в линейную алгебру и ее приложения в науке о данных, машинном обучении и обработке сигналов. Он охватывает такие темы, как векторные пространства, линейные преобразования, собственные векторы и декомпозиция сингулярных значений, и демонстрирует, как эти понятия могут быть использованы для решения реальных задач в анализе данных и машинном обучении. В книге также обсуждается история и развитие линейной алгебры, подчеркивается ее важность в формировании нашего понимания технологии и ее роли в стимулировании инноваций и прогресса. Линейная алгебра для Data Science Машинное обучение и обработка сигналов Автор: Джефф Фесслер, Радж Рао Надакудити 2024 451 Жанр прессы Кембриджского университета: нон-фикшн, технологии, математика Аудитория: студенты, исследователи, профессионалы в области Data Science, машинное обучение и обработка сигналов Резюме: эта книга предлагает комплексное введение в линейную алгебру и ее приложения в науке о данных, машинном обучении и обработке сигналов.
''

You may also be interested in:

Data Science and Machine Learning Applications in Subsurface Engineering
Elements of Data Science, Machine Learning, and Artificial Intelligence Using R
Just Enough Data Science and Machine Learning Essential Tools and Techniques
Elements of Data Science, Machine Learning, and Artificial Intelligence Using R
Data Science and Machine Learning Applications in Subsurface Engineering
Data Science and Machine Learning Applications in Subsurface Engineering
Just Enough Data Science and Machine Learning Essential Tools and Techniques
Introduction to Statistical and Machine Learning Methods for Data Science
Python for Data Science A step-by-step Python Programming Guide to Master Big Data, Analysis, Machine Learning, and Artificial Intelligence
PYTHON 2 Books in 1 Python Programming & Data Science. Master Data Analysis in Less than 7 Days and Discover the Secrets of Machine Learning with Step-by-Step Exercises
No bullshit guide to linear algebra
Linear Algebra, 2nd Edition
Exercises and Problems in Linear Algebra
Exercises And Problems In Linear Algebra
Linear Algebra to Differential Equations
Matrix Theory and Linear Algebra
Linear Algebra. 4th edition
LINEAR ALGEBRA: CORE TOPICS FOR THE SECOND COURSE
Linear Algebra. A Modern Introduction
Computational Methods of Linear Algebra
Linear Algebra (De Gruyter Textbook)
Linear Algebra with Application.Second Edition
Information-Driven Machine Learning Data Science as an Engineering Discipline
Scaling Python with Dask From Data Science to Machine Learning (Final)
Scaling Python with Dask From Data Science to Machine Learning (Final)
Information-Driven Machine Learning Data Science as an Engineering Discipline
Machine Learning in Business An Introduction to the World of Data Science Second Edition
Data Science Fusion Integrating Maths, Python, and Machine Learning
Data Science and Machine Learning for Non-Programmers Using SAS Enterprise Miner
Python Programming 2 Books in 1 Python for Data Analysis and Science with Big Data Analysis, Statistics and Machine Learning
Python Machine Learning The Ultimate Guide for Beginners to Machine Learning with Python, Programming and Deep Learning, Artificial Intelligence, Neural Networks, and Data Science
Numerical Methods and their applications to Linear Algebra
A Portrait of Linear Algebra, Fourth Edition
Linear Algebra Gateway to Mathematics Second Edition
Introduction to Linear Algebra (5th Edition)
Linear Algebra An Inquiry-Based Approach
Fundamentals of Linear Algebra and Analytical Geometry
Guide to Linear Algebra (Mathematical Guides, 4)
Linear Algebra (Dover Books on Mathematics)
Linear Algebra for the Sciences (UNITEXT, 151)