BOOKS - Mathematical Engineering of Deep Learning
Mathematical Engineering of Deep Learning - Benoit Liquet, Sarat Moka, Yoni Nazarathy 2025 PDF | EPUB CRC Press BOOKS
ECO~18 kg CO²

1 TON

Views
31567

Telegram
 
Mathematical Engineering of Deep Learning
Author: Benoit Liquet, Sarat Moka, Yoni Nazarathy
Year: 2025
Pages: 415
Format: PDF | EPUB
File size: 39.8 MB
Language: ENG



Pay with Telegram STARS
Book Description: Mathematical Engineering of Deep Learning Benoit Liquet, Sarat Moka, Yoni Nazarathy 2025 Pages: 415 CRC Press Summary: Mathematical Engineering of Deep Learning provides a comprehensive and concise overview of Deep Learning using mathematical concepts. The book offers a self-contained background on Machine Learning and optimization algorithms, progressing through the fundamental ideas of Deep Learning, including deep neural networks, convolutional models, recurrent models, long-short term memory, the attention mechanism, transformers, variational autoencoders, diffusion models, generative adversarial networks, and reinforcement learning. These concepts are presented using simple mathematical equations, along with concise descriptions of relevant tricks of the trade. The content serves as the foundation for state-of-the-art Artificial Intelligence applications involving images, sound, large language models, and other domains.
Mathematical Engineering of Deep arning Benoit Liquet, Sarat Moka, Yoni Nazarathy 2025 Pages: 415 CRC Press Summary: Mathematical Engineering of Deep arning предоставляет всесторонний и краткий обзор Deep arning с использованием математических концепций. Книга предлагает автономный фон по машинному обучению и алгоритмам оптимизации, продвигаясь через фундаментальные идеи глубокого обучения, включая глубокие нейронные сети, сверточные модели, рекуррентные модели, долговременную кратковременную память, механизм внимания, трансформаторы, вариационные автоэнкодеры, диффузионные модели, генеративные состязательные сети и обучение с подкреплением. Эти понятия представлены с помощью простых математических уравнений вместе с краткими описаниями соответствующих уловок торговли. Контент служит основой для современных приложений искусственного интеллекта, включающих изображения, звук, большие языковые модели и другие домены.
Engineering mathématique de Deep arning Benoit Liquet, Sarat Moka, Yoni Nazarathy 2025 Pages : 415 CRC Press Summary : Mathematical Engineering de Deep arning fournit un aperçu complet et rapide de Deep arning concepts mathématiques. livre offre un fond autonome sur l'apprentissage automatique et les algorithmes d'optimisation, en progressant à travers les idées fondamentales de l'apprentissage profond, y compris les réseaux neuronaux profonds, les modèles convolutifs, les modèles récurrents, la mémoire à long terme, le mécanisme d'attention, les transformateurs, les encodeurs variés, les modèles de diffusion, les réseaux de compétition générative et l'apprentissage avec des renforts. Ces concepts sont présentés à l'aide d'équations mathématiques simples ainsi que de brèves descriptions des astuces commerciales correspondantes. contenu sert de base aux applications modernes de l'intelligence artificielle, y compris les images, le son, les grands modèles linguistiques et d'autres domaines.
Ingeniería matemática de Deep arning Benoit Liquet, Sarat Moka, Yoni Nazarathy 2025 Pages: 415 CRC Press Summary: Mathematical Enh gineering of Deep arning proporciona una visión general completa y concisa de Deep arning usando conceptos matemáticos. libro ofrece un fondo autónomo sobre aprendizaje automático y algoritmos de optimización, avanzando a través de ideas fundamentales de aprendizaje profundo, incluyendo redes neuronales profundas, modelos de perforación, modelos recurrativos, memoria de corto plazo a largo plazo, mecanismo de atención, transformadores, codificadores de auto variación, modelos de difusión, redes competitivas generadoras y entrenamiento con refuerzos. Estos conceptos se presentan a través de simples ecuaciones matemáticas junto con breves descripciones de los trucos correspondientes del comercio. contenido sirve de base para aplicaciones modernas de inteligencia artificial que incluyen imágenes, sonido, grandes modelos de lenguaje y otros dominios.
Mathematical Engineering of Deep arning Benefit Liquet, Sarat Moka, Yoni Nazarathy 2025 Page: 415 CRC Press Summit: Mathematical Engineering of Deep arning una breve panoramica di Deep arning con concetti matematici. Il libro offre uno sfondo autonomo sull'apprendimento automatico e sugli algoritmi di ottimizzazione, promuovendo idee fondamentali di apprendimento profondo, tra cui reti neurali profonde, modelli compressi, modelli ricettivi, memoria a lungo termine a lungo termine, meccanismo di attenzione, trasformatori, autocoder di variazione, modelli di diffusione, reti di competizione generative e apprendimento con rinforzi. Questi concetti sono presentati attraverso semplici equazioni matematiche insieme a brevi descrizioni dei rispettivi trucchi commerciali. I contenuti sono la base per applicazioni avanzate di intelligenza artificiale che includono immagini, audio, grandi modelli linguistici e altri domini.
Mathematical Engineering of Deep arning Benoit Liquet, Sarat Moka, Yoni Nazarathy 2025 Seiten: 415 CRC Zusammenfassung: Mathematical Engineering of Deep arning bietet einen umfassenden und prägnanten Überblick über Deep arning mit mathematischen Konzepten. Das Buch bietet einen autonomen Hintergrund für maschinelles rnen und Optimierungsalgorithmen, der durch grundlegende Ideen für Deep arning wie tiefe neuronale Netzwerke, Faltungsmodelle, wiederkehrende Modelle, Langzeitkurzzeitgedächtnis, Aufmerksamkeitsmechanismus, Transformatoren, variable Autoencoder, Diffusionsmodelle, generative Wettbewerbsnetzwerke und verstärkendes rnen voranschreitet. Diese Konzepte werden durch einfache mathematische Gleichungen zusammen mit kurzen Beschreibungen der entsprechenden Tricks des Handels dargestellt. Der Inhalt dient als Grundlage für moderne KI-Anwendungen, darunter Bilder, Ton, große Sprachmodelle und andere Domänen.
Inżynieria matematyczna z głęboko arning Benoit Liquet, Sarat Moka, Yoni Nazarathy 2025 Strony: 415 CRC Podsumowanie prasy: Inżynieria matematyczna głębokiego arning zapewnia kompleksowy i zwięzły przegląd głębokiego arning przy użyciu koncepcji matematycznych. Książka oferuje autonomiczne tło na temat algorytmów uczenia maszynowego i optymalizacji, postępując poprzez fundamentalne idee głębokiego uczenia się, w tym głębokie sieci neuronowe, modele konwolucyjne, modele nawracające, pamięć długoterminową krótkoterminową, mechanizm uwagi, transformatory, zmienne autoenkodery, modele dyfuzji, generacyjne sieci adversaryjne i uczenie się wzmacniające. Pojęcia te reprezentowane są przez proste równania matematyczne wraz z krótkimi opisami poszczególnych sztuczek handlu. Zawartość stanowi podstawę nowoczesnych aplikacji sztucznej inteligencji, w tym obrazów, dźwięku, dużych modeli językowych i innych domen.
Mathematical Engineering of Deep arning Benoit, Sarat Moka, Yoni Nazarathy 2025 Pages: 415 CRC Press Summary: Mathematical Engineering of of of of of DeEEEMMMMmatMMatmatmatematic matic estematic estestestematical leing leing leing eStecing esteStecing estementing הספר מציע רקע אוטונומי על אלגוריתמי למידת מכונה ואופטימיזציה, המתקדמים באמצעות רעיונות בסיסיים של למידה עמוקה, כולל רשתות עצביות עמוקות, מודלים קונבנציונליים, מודלים חוזרים, זיכרון לטווח ארוך, מנגנון קשב, שנאים, מודלים של דיפוזיה, רשתות יריבות מחוזקות ולמידה של חיזוק. מושגים אלה מיוצגים על ידי משוואות מתמטיות פשוטות יחד עם תיאורים קצרים של הטריקים של הסחר. תוכן משמש כבסיס ליישומי בינה מלאכותית מודרניים, כולל תמונות, סאונד, מודלים גדולים של שפות ותחומים אחרים.''
Derin arning Matematik Mühendisliği Benoit Liquet, Sarat Moka, Yoni Nazarathy 2025 Sayfalar: 415 CRC Basın Özeti: Derin arning Matematik Mühendisliği, matematiksel kavramları kullanarak Derin arning'e kapsamlı ve özlü bir genel bakış sağlar. Kitap, derin sinir ağları, konvolüsyonel modeller, tekrarlayan modeller, uzun süreli kısa süreli bellek, dikkat mekanizması, transformatörler, varyasyonel otomatik kodlayıcılar, difüzyon modelleri dahil olmak üzere derin öğrenmenin temel fikirleri ile ilerleyen, makine öğrenimi ve optimizasyon algoritmaları üzerine özerk bir arka plan sunmaktadır. üretken düşmanlık ağları ve takviye öğrenme. Bu kavramlar, ticaretin ilgili hilelerinin kısa açıklamalarıyla birlikte basit matematiksel denklemlerle temsil edilir. İçerik, görüntüler, ses, büyük dil modelleri ve diğer alanlar dahil olmak üzere modern yapay zeka uygulamalarının temelini oluşturur.
الهندسة الرياضية للتعلم العميق Benoit Liquet, Sarat Moka, Yoni Nazarathy 2025 Pages: 415 CRC Press Summary: الهندسة الرياضية للتعلم العميق تقدم لمحة شاملة وموجزة عن التعلم العميق باستخدام المفاهيم الرياضية. يقدم الكتاب خلفية مستقلة عن خوارزميات التعلم الآلي والتحسين، ويتقدم من خلال الأفكار الأساسية للتعلم العميق، بما في ذلك الشبكات العصبية العميقة، والنماذج التلافيفية، والنماذج المتكررة، والذاكرة قصيرة المدى طويلة المدى، وآلية الانتباه، والمحولات، والمشفرات الذاتية المتنوعة، نماذج الانتشار، وشبكات الخصومة المولدة، والتعلم المعزز. يتم تمثيل هذه المفاهيم من خلال معادلات رياضية بسيطة جنبا إلى جنب مع وصف موجز للحيل ذات الصلة من التجارة. يعمل المحتوى كأساس لتطبيقات الذكاء الاصطناعي الحديثة، بما في ذلك الصور والصوت ونماذج اللغة الكبيرة والمجالات الأخرى.
딥 러닝 베누아 리케의 수학 공학, Sarat Moka, Yoni Nazarathy 2025 페이지: 415 CRC 프레스 요약: 딥 러닝의 수학 공학은 수학적 개념을 사용하여 딥 러닝에 대한 포괄적이고 간결한 개요를 제공합니다. 이 책은 심층 신경망, 컨볼 루션 모델, 반복 모델, 장기 기억, 주의 메커니즘, 변압기, 변형 자동 인코더, 확산 모델, 생성 적대적 네트워크 및 강화 학습. 이러한 개념은 간단한 수학적 방정식과 거래의 각 트릭에 대한 간단한 설명으로 표시됩니다. 콘텐츠는 이미지, 사운드, 대형 언어 모델 및 기타 도메인을 포함한 최신 인공 지능 응용 프로그램의 기초가됩니다.
Deep arningの数学工学Benoit Liquet、 Sarat Moka、 Yoni Nazarathy 2025 Pages: 415 CRC Press Summary: Deep arningの数学的概念を用いたDeep arningの包括的かつ簡潔な概要を提供します。この本は、深層ニューラルネットワーク、畳み込みモデル、再発モデル、長期短期記憶、注意メカニズム、変圧器、変動オートエンコーダ、拡散モデル、生成的な敵対的ネットワーク、強化学習など、深層学習の基本的なアイデアを通じて進歩している機械学習と最適化アルゴリズムに関する自律的な背景を提供しています。これらの概念は、貿易のそれぞれのトリックの簡単な説明とともに、単純な数学的方程式によって表される。コンテンツは、画像、サウンド、大きな言語モデル、その他のドメインを含む、現代の人工知能アプリケーションの基礎となります。
深度學習數學工程Benoit Liquet,Sarat Moka,Yoni Nazarathy 2025頁:415 CRC新聞摘要:深度學習數學工程提供全面而簡短的評論使用數學概念學習。該書提供了有關機器學習和優化算法的獨立背景,並通過深度學習的基本思想發展,包括深度神經網絡,卷積模型,遞歸模型,長期短期記憶,註意力機制,變壓器,變分自動編碼器,擴散模型,生成對抗網絡和強化學習。這些概念通過簡單的數學方程以及相關貿易策略的簡要描述來表示。內容是現代人工智能應用程序的基礎,包括圖像,聲音,大型語言模型和其他域。

You may also be interested in:

Data Engineering for Machine Learning Pipelines From Python Libraries to ML Pipelines and Cloud Platforms
Bayesian Machine Learning in Geotechnical Site Characterization (Challenges in Geotechnical and Rock Engineering)
Deep Learning and Convolutional Neural Networks for Medical Image Computing: Precision Medicine, High Performance and Large-Scale Datasets (Advances in Computer Vision and Pattern Recognition)
Ultimate Deepfake Detection Using Python Master Deep Learning Techniques like CNNs, GANs, and Transformers to Detect Deepfakes in Images, Audio, and Videos Using Python
Practical Deep Learning for Cloud, Mobile, and Edge Real-World AI & Computer-Vision Projects Using Python, Keras & TensorFlow, First Edition
Python for Data Analysis From the Beginner to Expert Crash Course 3.0 that will Change your Life as a Digital Programmer Thanks to the Minimalism of this Manual. Deep Machine Learning and Big Data
Python for Data Analysis Master Deep Learning With Python And Become Great At Programming.Python For Beginners
Data-Centric Machine Learning with Python: The ultimate guide to engineering and deploying high-quality models based on good data
Deep Learning for Multimedia Processing Applications Volume 1 Image Security and Intelligent Systems for Multimedia Processing
Deep Learning for Multimedia Processing Applications Volume 1 Image Security and Intelligent Systems for Multimedia Processing
Technological Advancement in Mechanical and Automotive Engineering: Proceeding of International Conference in Mechanical Engineering Research 2021 (Lecture Notes in Mechanical Engineering)
Synthetic Data for Deep Learning Generate Synthetic Data for Decision Making and Applications with Python and R
How to Learn Faster: 7 Easy Steps to Master Accelerated Learning Techniques, Learning Strategies and Fast Self-learning
Civil 3D and AutoCAD Professional Tips and Techniques for surveyors Topic-based learning for intermediate and advanced users Recommended for civil engineering and surveying professionals
Deep Learning-Based Detection of Catenary Support Component Defect and Fault in High-Speed Railways (Advances in High-speed Rail Technology)
Python for Data Science Data analysis and Deep learning with Python coding and programming
Key Digital Trends in Artificial Intelligence and Robotics: Proceedings of 4th International Conference on Deep Learning, Artificial Intelligence and … (Lecture Notes in Networks and Systems, 67
Unobtrusive Observations of Learning in Digital Environments: Examining Behavior, Cognition, Emotion, Metacognition and Social Processes Using Learning … in Analytics for Learning and Teaching)
Deep Dark Secrets (Deep Lakes Cozy Mystery Series Book 1)
Deep Dive into Deep Sea Exploring the Most Mysterious Levels of the Ocean
[Deep Wounds, Deep Healing] [By: Kraft, Charles H.] [August, 2010]
Deep Green Envy (Deep Lakes Cozy Mysteries)
Learn Data Analytics For Beginners Data Analyst, Deep Learning, Neural Network, Python Data Analytics
Activation Functions: Activation Functions in Deep Learning with LaTeX Applications
Coding with Python The Ultimate Guide For Data Science, a Smart Way to Program With Python, Understand Data Analytics and Deep Learning Faster Computer Programming for Beginners (Book Python 3)
Deep, Deep Donuts (Curves Just Wanna Have Fun, #2)
Deep Wedded Blues (Deep Lakes Mystery #5)
e-Learning, e-Education, and Online Training: 8th EAI International Conference, eLEOT 2022, Harbin, China, July 9-10, 2022, Proceedings, Part II (Lecture … Telecommunications Engineering Book 45
Ways of Learning: Learning Theories and Learning Styles in the Classroom
Diophantine Analysis: Proceedings at the Number Theory Section of the 1985 Australian Mathematical Society Convention (London Mathematical Society Lecture Note Series, Series Number 109)
Mastering Computer Vision with PyTorch 2.0 Discover, Design, and Build Cutting-Edge High Performance Computer Vision Solutions with PyTorch 2.0 and Deep Learning Techniques
The Best Python Programming Step-By-Step Beginners Guide: Easily Master Software engineering with Machine Learning, Data Structures, Syntax, Django Object-Oriented Programming, and AI application
Beurling Generalized Numbers (Mathematical Surveys and Monographs) (Mathematical Surveys and Monographs, 213)
Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging: Mathematical Imaging and Vision
The Finite Field Distance Problem (Carus Mathematical Monographs) (The Carus Mathematical Monographs, 37)
Machine Learning for Beginners A Complete and Phased Beginner’s Guide to Learning and Understanding Machine Learning and Artificial Intelligence Algoritms
Whispers of the Deep (Deep Waters Book 1)
Practical Data Science with Jupyter Explore Data Cleaning, Pre-processing, Data Wrangling, Feature Engineering and Machine Learning using Python and Jupyter
Python Data Science: Deep Learning Guide for Beginners with Data Science. Python Programming and Crush Course.
Hands-on Supervised Learning with Python Learn How to Solve Machine Learning Problems with Supervised Learning Algorithms