BOOKS - Practical Machine Learning Illustrated with KNIME
Practical Machine Learning Illustrated with KNIME - Yu Geng, Qin Li, Geng Yang, Wan Qiu 2024 PDF Springer BOOKS
ECO~15 kg CO²

1 TON

Views
155507

Telegram
 
Practical Machine Learning Illustrated with KNIME
Author: Yu Geng, Qin Li, Geng Yang, Wan Qiu
Year: 2024
Pages: 312
Format: PDF
File size: 37.5 MB
Language: ENG



Practical Machine Learning Illustrated with KNIME In today's rapidly evolving technological landscape, it is crucial to understand the process of technology evolution and its impact on humanity. As we delve deeper into the digital age, the need for developing a personal paradigm for perceiving the technological process of developing modern knowledge becomes increasingly important. This book, "Practical Machine Learning Illustrated with KNIME serves as a guide for professionals and students from diverse backgrounds to harness the power of Machine Learning (ML) without the burden of learning Python or extensive coding experience. With KNIME, a low-code platform, readers can focus on their objectives instead of struggling with technicalities. Part I: Introduction to AI Technology The first part of this textbook provides a solid foundation in essential knowledge, laying the groundwork for a comprehensive understanding of AI and ML. It covers the following topics: 1. Artificial Intelligence (AI) and its significance in modern society 2. The history of AI and its evolution over time 3. Types of AI: rule-based systems, decision trees, and neural networks 4. The role of ML in AI and its applications 5.
Практическое машинное обучение Иллюстрировано с KNIME В современном быстро развивающемся технологическом ландшафте крайне важно понимать процесс эволюции технологий и его влияние на человечество. По мере того как мы углубляемся в цифровую эпоху, все большее значение приобретает необходимость выработки личностной парадигмы восприятия технологического процесса развития современных знаний. Эта книга, «Practical Machine arning Illustrated with KNIME» служит руководством для профессионалов и студентов из разных слоев общества, чтобы использовать возможности машинного обучения (ML) без бремени изучения Python или обширного опыта программирования. С KNIME, платформой с низким кодом, читатели могут сосредоточиться на своих целях, а не бороться с техническими особенностями. Часть I: Введение в технологии ИИ Первая часть этого учебника обеспечивает прочную основу для необходимых знаний, закладывая основу для всестороннего понимания ИИ и МЛ. Он охватывает следующие темы: 1. Искусственный интеллект (ИИ) и его значение в современном обществе 2. История ИИ и его эволюция с течением времени 3. Типы ИИ: основанные на правилах системы, деревья решений и нейронные сети 4. Роль ML в ИИ и его приложениях 5.
Apprentissage machine pratique Illustré par KNIME Dans le paysage technologique en évolution rapide d'aujourd'hui, il est essentiel de comprendre le processus d'évolution de la technologie et son impact sur l'humanité. Au fur et à mesure que nous nous approfondissons dans l'ère numérique, la nécessité d'élaborer un paradigme personnel de la perception du processus technologique du développement des connaissances modernes prend de plus en plus d'importance. Ce livre, « Practical Machine Arning Illustrated with KNIME », sert de guide aux professionnels et aux étudiants de différents horizons pour exploiter les possibilités d'apprentissage automatique (ML) sans le fardeau d'apprendre Python une vaste ou vaste expérience de programmation. Avec KNIME, une plate-forme à faible code, les lecteurs peuvent se concentrer sur leurs objectifs plutôt que de lutter contre les caractéristiques techniques. Partie I : Introduction aux technologies de l'IA La première partie de ce manuel fournit une base solide pour les connaissances nécessaires, jetant les bases d'une compréhension globale de l'IA et du ML. Il couvre les sujets suivants : 1. L'intelligence artificielle (IA) et son importance dans la société moderne 2. L'histoire de l'IA et son évolution dans le temps 3. Types d'IA : systèmes basés sur des règles, arbres de décision et réseaux neuronaux 4. rôle de ML dans l'IA et ses annexes 5.
Práctica Machine arning Ilustrado con KNIME En el panorama tecnológico en rápida evolución actual, es fundamental comprender el proceso de evolución de la tecnología y su impacto en la humanidad. A medida que nos adentramos en la era digital, la necesidad de desarrollar un paradigma personal para percibir el proceso tecnológico del desarrollo del conocimiento moderno adquiere cada vez más importancia. Este libro, «Practical Machine arning Illustrated with KNIME» sirve como guía para que profesionales y estudiantes de diferentes orígenes aprovechen las oportunidades de aprendizaje automático (ML) sin la carga de aprender Python o una amplia experiencia de programación. Con KNIME, una plataforma de código bajo, los lectores pueden centrarse en sus objetivos en lugar de luchar contra las características técnicas. Parte I: Introducción a la tecnología de IA La primera parte de este tutorial proporciona una base sólida para los conocimientos necesarios, sentando las bases para una comprensión integral de la IA y el ML. Abarca los siguientes temas: 1. Inteligencia Artificial (IA) y su importancia en la sociedad actual 2. Historia de la IA y su evolución a lo largo del tiempo 3. Tipos de IA: sistemas basados en reglas, árboles de decisión y redes neuronales 4. Papel de ML en IA y sus aplicaciones 5.
Praktisches maschinelles rnen Illustriert mit KNIME In der heutigen schnelllebigen Technologielandschaft ist es entscheidend, den technologischen Evolutionsprozess und seine Auswirkungen auf die Menschheit zu verstehen. Während wir uns in das digitale Zeitalter vertiefen, wird es immer wichtiger, ein persönliches Paradigma für die Wahrnehmung des technologischen Prozesses der Entwicklung des modernen Wissens zu entwickeln. Dieses Buch, „Practical Machine arning Illustrated with KNIME“, dient als itfaden für Fachleute und Studenten mit unterschiedlichem Hintergrund, um die Möglichkeiten des maschinellen rnens (ML) zu nutzen, ohne die t des Erlernens von Python oder umfangreicher Programmiererfahrung. Mit KNIME, einer Low-Code-Plattform, können sich die ser auf ihre Ziele konzentrieren, anstatt mit technischen Merkmalen zu kämpfen. Teil I: Einführung in KI-Technologien Der erste Teil dieses Tutorials bietet eine solide Grundlage für das notwendige Wissen und legt die Grundlage für ein umfassendes Verständnis von KI und ML. Es umfasst die folgenden Themen: 1. Künstliche Intelligenz (KI) und ihre Bedeutung in der modernen Gesellschaft 2. Die Geschichte der KI und ihre Entwicklung im Laufe der Zeit 3 KI-Typen: regelbasierte Systeme, Entscheidungsbäume und neuronale Netze 4. Die Rolle von ML in der KI und ihren Anwendungen 5.
''
KNIME ile Uygulamalı Makine Öğrenimi Günümüzün hızla gelişen teknolojik ortamında, teknolojinin evrimini ve insanlık üzerindeki etkisini anlamak zorunludur. Dijital çağda derinleştikçe, modern bilginin gelişiminin teknolojik sürecinin algılanması için kişisel bir paradigma geliştirme ihtiyacı giderek daha önemli hale geliyor. Bu kitap, "KNIME ile Resimli Pratik Makine arning", Python öğrenme yükü veya kapsamlı programlama deneyimi olmadan makine öğrenme (ML) yeteneklerinden yararlanmak için farklı geçmişlere sahip profesyoneller ve öğrenciler için bir rehber olarak hizmet vermektedir. Düşük kodlu bir platform olan KNIME ile okuyucular, teknik ayrıntılarla mücadele etmek yerine hedeflerine odaklanabilirler. Bölüm I: AI Teknolojilerine Giriş Bu ders kitabının ilk kısmı, AI ve ML'nin kapsamlı bir şekilde anlaşılmasının temelini oluşturan gerekli bilgi için sağlam bir temel sağlar. Aşağıdaki konuları kapsar: 1. Yapay zeka (AI) ve modern toplumdaki önemi 2. Yapay zekanın tarihçesi ve zaman içindeki gelişimi 3. Yapay zeka türleri: kural tabanlı sistemler, karar ağaçları ve sinir ağları 4. AI ve uygulamalarında ML'nin rolü 5.
التعلم الآلي العملي المصور مع KNIME في المشهد التكنولوجي سريع التطور اليوم، من الضروري فهم تطور التكنولوجيا وتأثيرها على البشرية. مع تعمقنا في العصر الرقمي، أصبحت الحاجة إلى تطوير نموذج شخصي لتصور العملية التكنولوجية لتطوير المعرفة الحديثة ذات أهمية متزايدة. يعمل هذا الكتاب، «التعلم الآلي العملي المصور مع KNIME»، كدليل للمحترفين والطلاب من خلفيات متنوعة للاستفادة من قدرات التعلم الآلي (ML) دون عبء تعلم بايثون أو خبرة برمجة واسعة. مع KNIME، وهي منصة منخفضة الكود، يمكن للقراء التركيز على أهدافهم بدلاً من الكفاح مع الجوانب الفنية. الجزء الأول: مقدمة لتقنيات الذكاء الاصطناعي يوفر الجزء الأول من هذا الكتاب المدرسي أساسًا متينًا للمعرفة اللازمة، ويضع الأساس لفهم شامل للذكاء الاصطناعي و ML. وهو يغطي المواضيع التالية: 1. الذكاء الاصطناعي (AI) وأهميته في المجتمع الحديث 2. تاريخ الذكاء الاصطناعي وتطوره بمرور الوقت 3. أنواع الذكاء الاصطناعي: الأنظمة القائمة على القواعد، وأشجار القرار، والشبكات العصبية 4. دور ML في الذكاء الاصطناعي وتطبيقاته 5.

You may also be interested in:

Practical Machine Learning Illustrated with KNIME
Practical Machine Learning Illustrated with KNIME
Simple Machine Learning for Programmers Beginner|s Intro to Using Machine Learning, Deep Learning, and Artificial Intelligence for Practical Applications
Online Machine Learning: A Practical Guide with Examples in Python (Machine Learning: Foundations, Methodologies, and Applications)
Machine Learning for Data Streams with Practical Examples in MOA (Adaptive Computation and Machine Learning series)
Machine Learning for Beginners A Practical Guide to Understanding and Applying Machine Learning Concepts
Practical Machine Learning with R and Python Machine Learning in Stereo, Third Edition
Hands-On Machine Learning with Scikit-Learn and Scientific Python Toolkits: A practical guide to implementing supervised and unsupervised machine learning algorithms in Python
Fundamentals of Machine & Deep Learning A Complete Guide on Python Coding for Machine and Deep Learning with Practical Exercises for Learners (Sachan Book 102)
Google JAX Essentials A quick practical learning of blazing-fast library for Machine Learning and Deep Learning projects
Shallow Learning vs. Deep Learning A Practical Guide for Machine Learning Solutions
Shallow Learning vs. Deep Learning A Practical Guide for Machine Learning Solutions
Machine Learning with Rust: A practical attempt to explore Rust and its libraries across popular machine learning techniques
Machine Learning with Rust A practical attempt to explore Rust and its libraries across popular Machine Learning techniques
Practical Automated Machine Learning on Azure Using Azure Machine Learning to Quickly Build AI Solutions, First Edition
Machine Learning For Beginners Step-by-Step Guide to Machine Learning, a Beginners Approach to Artificial Intelligence, Big Data, Basic Python Algorithms, and Techniques for Business (Practical Exampl
Python Machine Learning: Everything You Should Know About Python Machine Learning Including Scikit Learn, Numpy, PyTorch, Keras And Tensorflow With Step-By-Step Examples And PRACTICAL Exercises
Machine Learning with Python Cookbook Practical Solutions from Preprocessing to Deep Learning
Risk Modeling Practical Applications of Artificial Intelligence, Machine Learning, and Deep Learning
Machine Learning with Python A Comprehensive Guide To Algorithms, Deep Learning Techniques, And Practical Applications
Machine Learning with Python Cookbook Practical Solutions from Preprocessing to Deep Learning, 2nd Edition (Final Release)
Machine Learning with Python Cookbook Practical Solutions from Preprocessing to Deep Learning, 2nd Edition (Final Release)
Machine Learning for Materials Discovery: Numerical Recipes and Practical Applications (Machine Intelligence for Materials Science)
Practical Machine Learning in R
Practical Machine Learning in R
Machine Learning With Python 3 books in 1 Hands-On Learning for Beginners+An in-Depth Guide Beyond the Basics+A Practical Guide for Experts
Machine Learning for Beginners A Complete and Phased Beginner’s Guide to Learning and Understanding Machine Learning and Artificial Intelligence Algoritms
Practical Machine Learning with Spark
Practical Machine Learning with H2O
Practical Machine Learning in R 1st Edition
Practical Machine Learning Innovations in Recommendation
Practical Machine Learning in R (2021 Update)
Practical Mathematics for AI and Deep Learning: A Concise yet In-Depth Guide on Fundamentals of Computer Vision, NLP, Complex Deep Neural Networks and Machine Learning (English Edition)
How Machines Learn An Illustrated Guide to Machine Learning
Practical Machine Learning with R Tutorials and Case Studies
Practical Machine Learning for Data Analysis Using Python
Python Machine Learning Practical Guide for Beginners
Practical MLOps Operationalizing Machine Learning Models
Practical Machine Learning with R Tutorials and Case Studies
Practical Simulations for Machine Learning (Early Release)