BOOKS - Machine Learning for Sustainable Development (De Gruyter Frontiers in Computa...
Machine Learning for Sustainable Development (De Gruyter Frontiers in Computational Intelligence, 9) - Kamal Kant Hiran July 20, 2021 PDF  BOOKS
ECO~18 kg CO²

2 TON

Views
195687

 
Machine Learning for Sustainable Development (De Gruyter Frontiers in Computational Intelligence, 9)
Author: Kamal Kant Hiran
Year: July 20, 2021
Format: PDF
File size: PDF 115 MB
Language: English



Book Description: Machine Learning for Sustainable Development De Gruyter Frontiers in Computational Intelligence 9 Kamal Kant Hiran July 20, 2021 The book "Machine Learning for Sustainable Development" is a comprehensive guide to the applications of machine learning in various sectors for sustainable development. With the increasing adoption of machine learning models in energy, agriculture, infrastructure, and other fields, this book provides a detailed overview of the state-of-the-art techniques and their potential for forecasting and prediction. The authors, experts in their respective fields, offer insights into the current trends and future directions in machine learning for sustainable development, highlighting its potential to address global challenges such as climate change, food security, and poverty reduction. The book is divided into four parts, each focusing on a specific aspect of machine learning for sustainable development: Part I: Introduction to Machine Learning for Sustainable Development This part provides an overview of the concept of sustainable development and its relevance to machine learning.
Машинное обучение для устойчивого развития De Gruyter Frontiers in Computational Intelligence 9 Камаль Кант Хиран 20 июля 2021 Книга «Машинное обучение для устойчивого развития» является всеобъемлющим руководством по применению машинного обучения в различных секторах для устойчивого развития. С ростом внедрения моделей машинного обучения в энергетике, сельском хозяйстве, инфраструктуре и других областях в этой книге представлен подробный обзор современных методов и их потенциала для прогнозирования и прогнозирования. Авторы, эксперты в своих областях, предлагают понимание текущих тенденций и будущих направлений в машинном обучении для устойчивого развития, подчеркивая его потенциал для решения глобальных проблем, таких как изменение климата, продовольственная безопасность и сокращение бедности. Книга состоит из четырех частей, каждая из которых посвящена конкретному аспекту машинного обучения для устойчивого развития: Часть I: Введение в машинное обучение для устойчивого развития В этой части представлен обзор концепции устойчивого развития и ее актуальности для машинного обучения.
Machine arning for Sustainable Development De Gruyter Frontiers in Computacional Intelligence 9 Kamal Kant Hiran Julio 20, 2021 libro «Machine arning for Sustainable Development» es una guía integral para la aplicación del aprendizaje automático en diferentes sectores para el desarrollo sostenible. Con la creciente implementación de modelos de aprendizaje automático en energía, agricultura, infraestructura y otras áreas, este libro presenta una visión detallada de las técnicas modernas y su potencial para la predicción y predicción. autores, expertos en sus campos, proponen una comprensión de las tendencias actuales y las orientaciones futuras en el aprendizaje automático para el desarrollo sostenible, destacando su potencial para enfrentar desafíos globales como el cambio climático, la seguridad alimentaria y la reducción de la pobreza. libro consta de cuatro partes, cada una dedicada a un aspecto específico del aprendizaje automático para el desarrollo sostenible: Parte I: Introducción al aprendizaje automático para el desarrollo sostenible Esta parte presenta una visión general del concepto de desarrollo sostenible y su relevancia para el aprendizaje automático.
Apprendimento automatico per lo sviluppo sostenibile De Gruyter Frontiers in Computational Intelligence 9 Kamal Kant Hiran 20 luglio 2021 Il libro «Apprendimento automatico per lo sviluppo sostenibile» è una guida completa per l'uso dell'apprendimento automatico in diversi settori per lo sviluppo sostenibile. Con l'aumento dei modelli di apprendimento automatico nell'energia, nell'agricoltura, nelle infrastrutture e in altri settori, il libro fornisce una panoramica dettagliata dei metodi moderni e delle loro capacità di previsione e previsione. Gli autori, esperti nel loro campo, propongono una comprensione delle tendenze attuali e dei futuri percorsi di apprendimento automatico per lo sviluppo sostenibile, sottolineando il suo potenziale per affrontare le sfide globali come il cambiamento climatico, la sicurezza alimentare e la riduzione della povertà. Il libro si compone di quattro parti, ognuna dedicata a un aspetto specifico dell'apprendimento automatico per lo sviluppo sostenibile: Parte I: Introduzione all'apprendimento automatico per lo sviluppo sostenibile In questa parte viene presentata una panoramica del concetto di sviluppo sostenibile e della sua rilevanza per l'apprendimento automatico.
''
Machine arning for Sustainability De Gruyter Frontiers in Computational Intelligence 9 Kamal Kant Hiran 2021 July 2021 Machine arning for Sustainabilityは、サステナビリティのためにあらゆる分野で機械学習を適用するための包括的なガイドです。エネルギー、農業、インフラなどの分野で機械学習モデルが採用されるようになるにつれて、この本は現代的な方法の詳細な概要と予測と予測の可能性を提供します。著者たちは、その分野の専門家であり、持続可能な開発のための機械学習の現在の傾向と将来の方向性についての洞察を提供し、気候変動、食料安全保障、貧困削減などの世界的な課題に対処する可能性を強調している。パート1:持続可能性のための機械学習の紹介このパートでは、持続可能性の概念と機械学習との関連性の概要を説明します。

You may also be interested in:

Artificial Intelligence and Machine Learning Applications for Sustainable Development
Machine Learning for Sustainable Development (De Gruyter Frontiers in Computational Intelligence, 9)
Artificial Intelligence and Machine Learning in Drug Design and Development (Fintech in a Sustainable Digital Society)
Applied Machine Learning and High-Performance Computing on AWS: Accelerate the development of machine learning applications following architectural best practices
Energizing Green Cities in Southeast Asia: Applying Sustainable Urban Energy and Emissions Planning (Directions in Development) (Directions in Development: Environment and Sustainable Development)
Teaching and Learning Strategies for Sustainable Development (Innovations in Higher Education Teaching and Learning, 19)
Sustainable Materials The Role of Artificial Intelligence and Machine Learning
Sustainable Materials The Role of Artificial Intelligence and Machine Learning
Environmental, Social and Governance and Sustainable Development in Healthcare (Sustainable Development Goals Series)
Institutional and Social Innovation for Sustainable Urban Development (Routledge Studies in Sustainable Development)
Proceedings of I4SDG Workshop 2023: IFToMM for Sustainable Development Goals (Mechanisms and Machine Science, 134)
Simple Machine Learning for Programmers Beginner|s Intro to Using Machine Learning, Deep Learning, and Artificial Intelligence for Practical Applications
Machine Learning for Beginners A Complete and Phased Beginner’s Guide to Learning and Understanding Machine Learning and Artificial Intelligence Algoritms
Integrating Sustainable Development into the Curriculum (Innovations in Higher Education Teaching and Learning Book 18)
AI and Machine Learning On-Device Development (Early Release)
AI and Machine Learning for On-Device Development (Early Release)
AI and Machine Learning On-Device Development (Second Early Release)
Applied Software Development with Python & Machine Learning
AI and Machine Learning for On-Device Development A Programmer|s Guide
Artificial Intelligence and Machine Learning in Drug Design and Development
Artificial Intelligence and Machine Learning in Drug Design and Development
Python Machine Learning The Ultimate Guide for Beginners to Machine Learning with Python, Programming and Deep Learning, Artificial Intelligence, Neural Networks, and Data Science
Debugging Machine Learning Models with Python: Develop high-performance, low-bias, and explainable machine learning and deep learning models
Machine Learning for Sustainable Manufacturing in Industry 4.0 (Mathematical Engineering, Manufacturing, and Management Sciences)
Machine Learning for Beginners An Introductory Guide to Learn and Understand Artificial Intelligence, Neural Networks and Machine Learning
Building Machine Learning Systems Using Python Practice to Train Predictive Models and Analyze Machine Learning Results
Machine Learning for Business The Ultimate Artificial Intelligence & Machine Learning for Managers, Team Leaders and Entrepreneurs
Machine Learning in Production: Master the art of delivering robust Machine Learning solutions with MLOps (English Edition)
Serverless Machine Learning with Amazon Redshift ML: Create, train, and deploy machine learning models using familiar SQL commands
Machine Learning Master Machine Learning Fundamentals for Beginners, Business Leaders and Aspiring Data Scientists
Online Machine Learning: A Practical Guide with Examples in Python (Machine Learning: Foundations, Methodologies, and Applications)
Machine Learning for Data Streams with Practical Examples in MOA (Adaptive Computation and Machine Learning series)
Machine Learning The Ultimate Guide to Understand AI Big Data Analytics and the Machine Learning’s Building Block Application in Modern Life
Machine Learning A Guide to PyTorch, TensorFlow, and Scikit-Learn Mastering Machine Learning With Python
Machine Learning for Beginners Build and deploy Machine Learning systems using Python, 2nd Edition
Machine Learning A Guide to PyTorch, TensorFlow, and Scikit-Learn Mastering Machine Learning With Python
Machine Learning with Core ML 2 and Swift A beginner-friendly guide to integrating machine learning into your apps
Machine Learning: A Guide to PyTorch, TensorFlow, and Scikit-Learn: Mastering Machine Learning With Python
Robust Machine Learning: Distributed Methods for Safe AI (Machine Learning: Foundations, Methodologies, and Applications)
Programming Machine Learning Machine Learning Basics Concepts + Artificial Intelligence + Python Programming + Python Machine Learning