BOOKS - Explainable Deep Learning AI: Methods and Challenges
Explainable Deep Learning AI: Methods and Challenges - Jenny Benois-Pineau March 10, 2023 PDF  BOOKS
ECO~32 kg CO²

3 TON

Views
445309

Telegram
 
Explainable Deep Learning AI: Methods and Challenges
Author: Jenny Benois-Pineau
Year: March 10, 2023
Format: PDF
File size: PDF 4.1 MB
Language: English



Book Explainable Deep Learning Methods and Challenges Book Overview: Explainable Deep Learning Methods and Challenges is a comprehensive guide to the latest advancements in the field of Explainable Artificial Intelligence (XAI), providing an overview of the current state of the art in XAI, along with novel technical methods and applications that address the challenges of explainability in deep learning AI systems. The book begins by covering the basics of XAI and its importance in various applications of artificial intelligence, before delving into specific technical methods and approaches for deep learning, including general XAI methods and their applications, as well as user-oriented evaluation approaches.
Книга Объяснимые методы глубокого обучения и проблемы Обзор книги: Explainable Deep arning Methods and Challenges - это всеобъемлющее руководство по последним достижениям в области Explainable Artificial Intelligence (XAI), предоставляющее обзор текущего состояния техники в XAI, наряду с новыми техническими методами и приложениями, которые решают проблемы объяснимости в системах глубокого обучения ИИ. Книга начинается с освещения основ XAI и его важности в различных приложениях искусственного интеллекта, прежде чем углубиться в конкретные технические методы и подходы для глубокого обучения, включая общие методы XAI и их приложения, а также ориентированные на пользователя оценочные подходы.
Livre Expliquable Deep arning Methods and Challenges est un guide complet des dernières avancées en matière d'Intelligence Artificielle Exploitable (XAI) qui donne un aperçu de l'état actuel de la technique dans XAI, ainsi que de nouvelles techniques et applications qui résolvent les problèmes explications dans les systèmes d'apprentissage profond de l'IA. livre commence par mettre en lumière les bases de XAI et son importance dans les différentes applications de l'intelligence artificielle, avant d'approfondir les méthodes techniques spécifiques et les approches d'apprentissage profond, y compris les méthodes générales de XAI et leurs applications, ainsi que les approches d'évaluation axées sur l'utilisateur.
Métodos Explicables de Aprendizaje Profundo y Desafíos Revisión del : Explorable Deep arning Methods and Challenges es una guía completa sobre los últimos avances en Inteligencia Artificial Explosiva (XAI) que ofrece una visión general del estado actual de la técnica en XAI, junto con nuevas técnicas y aplicaciones que resuelven problemas de explicabilidad en sistemas de aprendizaje profundo de IA. libro comienza destacando los fundamentos de XAI y su importancia en las diferentes aplicaciones de inteligencia artificial antes de profundizar en técnicas y enfoques técnicos específicos para el aprendizaje profundo, incluyendo las técnicas generales de XAI y sus aplicaciones, así como enfoques de evaluación orientados al usuario.
O livro Explica Técnicas de Aprendizagem Profunda e os Problemas A Revisão do Livro: Expainable Deep arning Methods and Challenges é um guia abrangente sobre os avanços mais recentes na Exploração da Inteligência Artística (XAI), que fornece uma visão geral do estado atual da tecnologia no XAI, juntamente com os novos métodos técnicos e aplicativos que resolvem problemas de explicabilidade nos sistemas de aprendizagem profunda da IA. O livro começa com a cobertura dos fundamentos do XAI e sua importância em vários aplicativos de inteligência artificial antes de se aprofundar em técnicas técnicas e abordagens específicas para o aprendizado profundo, incluindo técnicas comuns XAI e seus aplicativos, e abordagens de avaliação orientadas para o usuário.
I metodi di apprendimento approfondito e i problemi Esplorativi del libro: Esplainable Deep arning Methods and Challenges è una guida completa agli ultimi sviluppi di Esplainable Artigial Intelligence (XAI) che fornisce una panoramica dello stato attuale della tecnologia XAI, insieme a nuove tecniche e applicazioni tecniche che risolvono i problemi di spiegabilità nei sistemi di apprendimento dell'intelligenza artificiale. Il libro inizia mettendo in luce le basi di XAI e la sua importanza in diverse applicazioni di intelligenza artificiale, prima di approfondire le tecniche tecniche e gli approcci specifici per l'apprendimento approfondito, inclusi i metodi comuni XAI e le loro applicazioni e gli approcci di valutazione orientati all'utente.
Das Buch Erklärbare Deep-arning-Methoden und -Probleme Buchübersicht: Explainable Deep arning Methods and Challenges ist ein umfassender itfaden zu den neuesten Fortschritten in der Explainable Artificial Intelligence (XAI), der einen Überblick über den aktuellen Stand der Technik in XAI bietet, zusammen mit neuen technischen Methoden und Anwendungen, die Probleme lösen Erklärbarkeit in KI-Deep-arning-Systemen. Das Buch beginnt damit, die Grundlagen von XAI und seine Bedeutung in verschiedenen Anwendungen der künstlichen Intelligenz hervorzuheben, bevor es tiefer in spezifische technische Methoden und Ansätze für Deep arning eintaucht, einschließlich allgemeiner XAI-Methoden und ihrer Anwendungen sowie benutzerzentrierter Bewertungsansätze.
Book Explainable Deep arning Methods and Challenges Book Overview: Explainable Deep arning Methods and Challenges to kompleksowy przewodnik po najnowszych osiągnięciach w Explainable Artificial Intelligence (XAI), zapewniający przegląd aktualnego stanu technologii w XAI, wraz z nowymi metodami i zastosowaniami technicznymi które rozwiązują problemy wyjaśnialności w systemach głębokiego uczenia się sztucznej inteligencji. Książka rozpoczyna się od podkreślenia podstaw XAI i jej znaczenia w różnych zastosowaniach sztucznej inteligencji, zanim przejdzie do konkretnych metod technicznych i podejść do głębokiego uczenia się, w tym ogólnych metod XAI i ich zastosowań, a także zorientowanych na użytkownika metod oceny.
Book Explainable arning Methods and Exchanges Book Overview: Explainable Deep Methods and Explinable Deep Technology and Technology), במערכות למידה עמוקות. הספר מתחיל בכך שהוא מדגיש את היסודות של XAI ואת חשיבותו ביישומי AI שונים, לפני שהוא מתעמק בשיטות ובגישות טכניות ספציפיות ללמידה עמוקה, כולל שיטות XAI כלליות והיישומים שלהם, וגישות הערכה מונחות משתמש.''
Açıklanabilir Kitap Derin Öğrenme Yöntemleri ve Zorlukları Kitaba Genel Bakış: Açıklanabilir Derin Öğrenme Yöntemleri ve Zorlukları, Açıklanabilir Yapay Zeka (XAI) alanındaki en son gelişmelere yönelik kapsamlı bir kılavuzdur ve XAI'daki mevcut teknoloji durumuna genel bir bakış sunarken, AI derin öğrenme sistemlerinde açıklanabilirlik sorunlarını çözen yeni teknik yöntemler ve uygulamalarla birlikte. Kitap, XAI'nin temellerini ve çeşitli AI uygulamalarındaki önemini vurgulayarak, genel XAI yöntemleri ve uygulamaları ve kullanıcı odaklı değerlendirme yaklaşımları da dahil olmak üzere derin öğrenme için belirli teknik yöntem ve yaklaşımları incelemeden önce başlar.
كتاب طرق وتحديات التعلم العميق القابلة للتفسير نظرة عامة على الكتاب: طرق وتحديات التعلم العميق القابلة للتفسير هو دليل شامل لآخر التطورات في الذكاء الاصطناعي القابل للتفسير (XAI)، ويقدم لمحة عامة عن الوضع الحالي للتكنولوجيا في XAI، إلى جانب الأساليب والتطبيقات التقنية الجديدة التي تحل المشكلات إمكانية التفسير في أنظمة التعلم العميق للذكاء الاصطناعي. يبدأ الكتاب بتسليط الضوء على أساسيات XAI وأهميته في مختلف تطبيقات الذكاء الاصطناعي، قبل الخوض في طرق ونهج تقنية محددة للتعلم العميق، بما في ذلك طرق XAI العامة وتطبيقاتها ونهج التقييم الموجهة للمستخدم.
책 설명 가능한 딥 러닝 방법 및 챌린지 도서 개요: 설명 가능한 딥 러닝 방법 및 챌린지는 XAI (Explainable Artificial Intelligence) 의 최신 발전에 대한 포괄적 인 가이드이며 XAI의 현재 기술 상태에 대한 개요를 제공급합니다. 이 책은 일반 XAI 방법 및 응용 프로그램 및 사용자 지향 평가 접근 방식을 포함하여 딥 러닝을위한 특정 기술 방법과 접근 방식을 탐구하기 전에 XAI의 기본 사항과 다양한 AI 응용 프로그램에서의 중요성을 강조하는 것으로 시작합니다.
Book Explainable Deep arning Methods and Challenge Book Overview: Explainable Deep arning Methods and Challenge XAIは、XAIの最新技術の概要と、問題を解決する新しい技術的手法とアプリケーションを提供する総合的なガイドですAIディープラーニングシステムの説明。本書は、XAIの基本と、さまざまなAIアプリケーションにおけるその重要性を強調してから始まり、一般的なXAIメソッドとそのアプリケーション、およびユーザー指向の評価アプローチを含む、ディープラーニングの具体的な技術的方法とアプローチを掘り下げます。
書可解釋的深度學習方法和問題書評:可解釋的深度學習方法與挑戰是可解釋人工智能(XAI)最新進展的全面指南,提供對XAI技術現狀的概述,以及解決問題的新技術方法和應用程序AI深度學習系統中的可解釋性。該書首先重點介紹了XAI的基礎知識及其在各種人工智能應用中的重要性,然後深入研究了用於深度學習的特定技術方法和方法,包括XAI及其應用的一般技術以及以用戶為中心的評估方法。

You may also be interested in:

Explainable Deep Learning AI: Methods and Challenges
Debugging Machine Learning Models with Python: Develop high-performance, low-bias, and explainable machine learning and deep learning models
Explainable AI: Interpreting, Explaining and Visualizing Deep Learning (Lecture Notes in Computer Science Book 11700)
Deep Learning in Gaming and Animations Principles and Applications (Explainable AI (XAI) for Engineering Applications)
Grokking Algorithms Simple and Effective Methods to Grokking Deep Learning and Machine Learning
Machine Learning and Deep Learning in Computational Toxicology (Computational Methods in Engineering and the Sciences)
Computational Methods for Deep Learning (2nd Edition)
Advanced Methods and Deep Learning in Computer Vision
Fundamentals and Methods of Machine and Deep Learning Algorithms, Tools, and Applications
Deep Learning for Data Architects: Unleash the power of Python|s deep learning algorithms (English Edition)
Java Deep Learning Projects: Implement 10 real-world deep learning applications using Deeplearning4j and open source APIs
Building Scalable Deep Learning Pipelines on AWS Develop, Train, and Deploy Deep Learning Models
Getting started with Deep Learning for Natural Language Processing Learn how to build NLP applications with Deep Learning
Deep Learning for the Life Sciences Applying Deep Learning to Genomics, Microscopy, Drug Discovery, and More First Edition
Deep Learning fur die Biowissenschaften Einsatz von Deep Learning in Genomik, Biophysik, Mikroskopie und medizinischer Analyse
Deep Learning for Data Architects Unleash the power of Python|s deep learning algorithms
Deep Learning for Finance Creating Machine & Deep Learning Models for Trading in Python
Deep Learning for Data Architects Unleash the power of Python|s deep learning algorithms
Deep Learning for the Life Sciences Applying Deep Learning to Genomics, Microscopy, Drug Discovery, and More
Anatomy of Deep Learning Principles: Writing a deep learning library from scratch (Japanese Edition)
Deep Learning for Finance Creating Machine & Deep Learning Models for Trading in Python
Programming PyTorch for Deep Learning Creating and Deploying Deep Learning Applications First Edition
Deep Learning With Python Develop Deep Learning Models on Theano and TensorFlow using Keras
Practical Mathematics for AI and Deep Learning: A Concise yet In-Depth Guide on Fundamentals of Computer Vision, NLP, Complex Deep Neural Networks and Machine Learning (English Edition)
Mastering Deep Learning: A Comprehensive Guide to Master Deep Learning
Deep Learning Beginner’s Guide to Learn the Realms of Deep Learning from A-Z
Mastering Deep Learning A Comprehensive Guide to Master Deep Learning
Mastering Deep Learning A Comprehensive Guide to Master Deep Learning
Hands-on Deep Learning A Guide to Deep Learning with Projects and Applications
Neural Networks and Deep Learning Neural Networks & Deep Learning, Deep Learning, Big Data
Accountable and Explainable Methods for Complex Reasoning over Text
Fundamentals of Machine & Deep Learning A Complete Guide on Python Coding for Machine and Deep Learning with Practical Exercises for Learners (Sachan Book 102)
Deep Learning with Python The Crash Course for Beginners to Learn the Basics of Deep Learning with Python Using TensorFlow, Keras and PyTorch
Deep Learning with Python Comprehensive Beginners Guide to Learn and Understand the Realms of Deep Learning with Python
Beginning with Deep Learning Using TensorFlow A Beginners Guide to TensorFlow and Keras for Practicing Deep Learning Principle
Deep Learning With Python Simple and Effective Tips and Tricks to Learn Deep Learning with Python
Google JAX Essentials A quick practical learning of blazing-fast library for Machine Learning and Deep Learning projects
Deep Learning With Python Advanced and Effective Strategies of Using Deep Learning with Python Theories
Shallow Learning vs. Deep Learning A Practical Guide for Machine Learning Solutions
Shallow Learning vs. Deep Learning A Practical Guide for Machine Learning Solutions