BOOKS - Fundamentals of Supervised Machine Learning: With Applications in Python, R, ...
Fundamentals of Supervised Machine Learning: With Applications in Python, R, and Stata (Statistics and Computing) - Giovanni Cerulli November 15, 2023 PDF  BOOKS
ECO~24 kg CO²

2 TON

Views
27866

Telegram
 
Fundamentals of Supervised Machine Learning: With Applications in Python, R, and Stata (Statistics and Computing)
Author: Giovanni Cerulli
Year: November 15, 2023
Format: PDF
File size: PDF 69 MB
Language: English



Pay with Telegram STARS
Book Description: Fundamentals of Supervised Machine Learning with Applications in Python, R, and Stata Statistics and Computing Author: Giovanni Cerulli November 15, 2023 9783031413360 Summary: In this book, the author presents a comprehensive guide to supervised machine learning, providing a balance between theory and applications using Python, R, and Stata. The book covers a broad spectrum of model selection, regularization, discriminant analysis, nearest neighbors, support vector machines, tree modeling, artificial neural networks, deep learning, and sentiment analysis. Each chapter is self-contained, starting with theoretical explanations followed by practical applications using real-world datasets. The book is intended for PhD students, researchers, and practitioners from various disciplines, including economics, medicine, and epidemiology, who have a good understanding of basic statistics and a working knowledge of statistical software. Introduction: The world we live in is constantly evolving, and technology is advancing at an unprecedented rate. As humans, it is essential to understand the technological process of developing modern knowledge to ensure our survival and the unity of humanity. This book provides a foundation for understanding the fundamentals of supervised machine learning, which is crucial for navigating the complexities of modern technology. With the increasing use of machine learning methods in various fields, it is vital to develop a personal paradigm for perceiving the technological process and its impact on society.
Fundamentals of Supervised Machine arning with Applications in Python, R, and Stata Statistics and Computing Author: Giovanni Cerulli November 15, 2023 9783031413360 Резюме: В этой книге автор представляет исчерпывающее руководство по контролируемому машинному обучению, обеспечивающее баланс между теорией и приложениями, использующими Python, R и Stata. Книга охватывает широкий спектр выбора моделей, регуляризацию, дискриминантный анализ, ближайших соседей, машины опорных векторов, моделирование деревьев, искусственные нейронные сети, глубокое обучение и анализ настроений. Каждая глава является самостоятельной, начиная с теоретических объяснений, а затем практических приложений с использованием реальных наборов данных. Книга предназначена для аспирантов, исследователей и практиков из различных дисциплин, включая экономику, медицину и эпидемиологию, которые хорошо понимают базовую статистику и имеют рабочие знания в области статистического программного обеспечения. Введение: Мир, в котором мы живем, постоянно развивается, а технологии развиваются с беспрецедентной скоростью. Как людям, важно понимать технологический процесс развития современных знаний, чтобы обеспечить наше выживание и единство человечества. Эта книга обеспечивает основу для понимания основ машинного обучения с учителем, что имеет решающее значение для навигации по сложностям современных технологий. С ростом использования методов машинного обучения в различных областях жизненно важно выработать личностную парадигму восприятия технологического процесса и его влияния на общество.
''
Python、 R、およびStata Statistics and Computingにおけるアプリケーションによる監視機械学習の基礎著者:Giovanni Cerulli 11月15日、2023 9783031413360はPython、 R、およびStataを使用しています。この本は、モデルの選択、規則化、判別分析、近隣、サポートベクタマシン、ツリーモデリング、人工ニューラルネットワーク、ディープラーニング、気分分析の幅広い範囲をカバーしています。各章は、理論的な説明から始まり、実世界のデータセットを使用した実用的なアプリケーションから始まり、自己完結しています。本書は、基礎統計と統計ソフトウェアの作業知識を十分に理解している経済学、医学、疫学などのさまざまな分野の大学院生、研究者、実践者を対象としています。はじめに:私たちが住んでいる世界は絶えず進化しており、テクノロジーは前例のない速度で進化しています。人々として、人類の生存と団結を確実にするためには、現代の知識の発展の技術的プロセスを理解することが重要です。この本は、現代の技術の複雑さをナビゲートするために不可欠な、監督された機械学習の基礎を理解するためのフレームワークを提供します。様々な分野で機械学習手法を活用することで、技術プロセスの認識と社会への影響のための個人的なパラダイムを開発することが不可欠です。

You may also be interested in:

Hands-on Supervised Learning with Python Learn How to Solve Machine Learning Problems with Supervised Learning Algorithms
Fundamentals of Supervised Machine Learning With Applications in Python, R, and Stata
Fundamentals of Supervised Machine Learning With Applications in Python, R, and Stata
Fundamentals of Supervised Machine Learning: With Applications in Python, R, and Stata (Statistics and Computing)
Supervised Machine Learning with Python A Comprehensive guide to Supervised Learning for 2024
Supervised Machine Learning with Python A Comprehensive guide to Supervised Learning for 2024
Supervised Machine Learning with Python: A Comprehensive guide to Supervised Learning for 2024
Hands-On Machine Learning with Scikit-Learn and Scientific Python Toolkits: A practical guide to implementing supervised and unsupervised machine learning algorithms in Python
Machine Learning Master Supervised and Unsupervised Learning Algorithms with Real Examples
Machine Learning: Master Supervised and Unsupervised Learning Algorithms with Real Examples (English Edition)
Machine Learning. Supervised Learning Techniques and Tools Nonlinear Models Exercises with R, SAS, STATA, EVIEWS and SPSS
Machine Learning: Fundamental Algorithms for Supervised and Unsupervised Learning With Real-World Applications (Advanced Data Analytics Book 1)
Supervised Machine Learning for Text Analysis in R
Machine Learning Master Machine Learning Fundamentals for Beginners, Business Leaders and Aspiring Data Scientists
The Mathematics of Machine Learning Lectures on Supervised Methods and Beyond
The Mathematics of Machine Learning Lectures on Supervised Methods and Beyond
The Mathematics of Machine Learning Lectures on Supervised Methods and Beyond
Supervised Machine Learning Optimization Framework and Applications with SAS and R
Machine Learning For Beginners Guide Algorithms Supervised & Unsupervsied Learning. Decision Tree & Random Forest Introduction
Supervised Machine Learning in Wind Forecasting and Ramp Event Prediction
Fundamentals of Machine & Deep Learning A Complete Guide on Python Coding for Machine and Deep Learning with Practical Exercises for Learners (Sachan Book 102)
Supervised and Unsupervised Learning for Data Science (Unsupervised and Semi-Supervised Learning)
Linear Algebra And Optimization With Applications To Machine Learning - Volume II Fundamentals of Optimization Theory with Applications to Machine Learning
Fundamentals of Machine Learning
Machine Learning Fundamentals A Concise Introduction
Practical Mathematics for AI and Deep Learning: A Concise yet In-Depth Guide on Fundamentals of Computer Vision, NLP, Complex Deep Neural Networks and Machine Learning (English Edition)
Fundamentals of Optimization Theory With Applications to Machine Learning
Fundamentals of Data Analytics: With a View to Machine Learning
Fundamentals of Machine Learning An Introduction to Neural Networks
Machine Learning and Data Science Fundamentals and Applications
Machine Learning for the Physical Sciences Fundamentals and Prototyping with Julia
Python for Machine Learning From Fundamentals to Real-World Applications
Python for Machine Learning: From Fundamentals to Real-World Applications
Python for Machine Learning From Fundamentals to Real-World Applications
Machine Learning for the Physical Sciences Fundamentals and Prototyping with Julia
Fundamentals of Pattern Recognition and Machine Learning, 2nd Edition
Simple Machine Learning for Programmers Beginner|s Intro to Using Machine Learning, Deep Learning, and Artificial Intelligence for Practical Applications
Fundamentals and Methods of Machine and Deep Learning Algorithms, Tools, and Applications
Machine Learning for Beginners A Complete and Phased Beginner’s Guide to Learning and Understanding Machine Learning and Artificial Intelligence Algoritms
Knowledge Graphs Fundamentals, Techniques, and Applications (Adaptive Computation and Machine Learning series)