BOOKS - Causal Inference in Python: Applying Causal Inference in the Tech Industry
Causal Inference in Python: Applying Causal Inference in the Tech Industry - Matheus Facure Expected publication August 22, 2023 PDF  BOOKS
ECO~29 kg CO²

3 TON

Views
99866

Telegram
 
Causal Inference in Python: Applying Causal Inference in the Tech Industry
Author: Matheus Facure
Year: Expected publication August 22, 2023
Format: PDF
File size: PDF 11 MB
Language: English



Pay with Telegram STARS
Causal Inference in Python: Applying Causal Inference in the Tech Industry In today's fast-paced tech industry, understanding the impact of our actions on business metrics is crucial for making informed decisions. Causal inference is a powerful tool that allows us to estimate the effects of different levers on our desired outcomes, helping us optimize our strategies and drive growth. This book, "Causal Inference in Python: Applying Causal Inference in the Tech Industry provides a comprehensive guide to applying causal inference in the tech industry, with practical examples and real-world applications. The author, Matheus Facure, a senior data scientist at Nubank, expertly explains the largely untapped potential of causal inference for estimating impacts and effects. The book covers classical causal inference methods such as randomized control trials, A/B tests, linear regression, propensity score synthetic controls, and difference-in-differences. Each method is accompanied by an application in the industry, serving as a grounding example for readers to understand how to apply these techniques in their own work.
Причинный вывод на Python: Применение причинного вывода в технологической индустрии В современной быстро развивающейся технологической индустрии понимание влияния наших действий на показатели бизнеса имеет решающее значение для принятия обоснованных решений. Причинный вывод - это мощный инструмент, который позволяет нам оценить влияние различных рычагов на наши желаемые результаты, помогая нам оптимизировать наши стратегии и стимулировать рост. Эта книга «Causal Inference in Python: Applying Causal Inference in the Tech Industry» содержит исчерпывающее руководство по применению причинно-следственных связей в технологической индустрии с практическими примерами и реальными приложениями. Автор, Matheus Facure, старший специалист по данным в Nubank, экспертно объясняет в значительной степени неиспользованный потенциал причинного вывода для оценки воздействий и эффектов. Книга охватывает классические методы причинного вывода, такие как рандомизированные контрольные испытания, A/B-тесты, линейная регрессия, синтетические контроли оценки склонности и различия в различиях. Каждый метод сопровождается приложением в отрасли, служа примером заземления для читателей, чтобы понять, как применять эти методы в собственной работе.
Conclusion causale sur Python : Application de la conclusion causale dans l'industrie technologique Dans l'industrie technologique moderne en évolution rapide, il est essentiel de comprendre l'impact de nos actions sur la performance des entreprises pour prendre des décisions éclairées. La conclusion causale est un outil puissant qui nous permet d'évaluer l'impact des différents leviers sur nos résultats souhaités, nous aidant à optimiser nos stratégies et à stimuler la croissance. Ce livre, « Causal Inference in Python : Applying Causal Inference in the Tech Industry », fournit un guide complet sur l'application de la causalité dans l'industrie technologique, avec des exemples pratiques et des applications réelles. L'auteur, Matheus Facure, spécialiste senior des données chez Nubank, explique de manière experte le potentiel largement inexploité des conclusions causales pour évaluer les impacts et les effets. livre couvre les méthodes classiques d'inférence causale telles que les essais de contrôle randomisés, les tests A/B, la régression linéaire, les contrôles synthétiques d'évaluation de la propension et les différences dans les différences. Chaque méthode est accompagnée d'une application dans l'industrie, servant d'exemple de mise à la terre pour que les lecteurs comprennent comment appliquer ces méthodes dans leur propre travail.
Conclusión causal en Python: Aplicación de la inferencia causal en la industria tecnológica En la industria tecnológica de hoy en día, la comprensión del impacto de nuestras acciones en el desempeño empresarial es crucial para tomar decisiones informadas. La inferencia causal es una poderosa herramienta que nos permite evaluar el impacto de las diferentes palancas en nuestros resultados deseados, ayudándonos a optimizar nuestras estrategias y estimular el crecimiento. Este libro, «Causal Inference in Python: Applying Causal Inference in the Tech Industry», ofrece una guía exhaustiva sobre la aplicación de la causalidad en la industria tecnológica con ejemplos prácticos y aplicaciones reales. autor, Matheus Facure, especialista senior en datos de Nubank, explica de manera experta en gran medida el potencial de inferencia causal sin explotar para evaluar los impactos y efectos. libro cubre técnicas clásicas de inferencia causal, como ensayos de control aleatorizados, pruebas A/B, regresión lineal, controles sintéticos de evaluación de inclinación y diferencias en las diferencias. Cada método se acompaña de una aplicación en la industria, sirviendo como ejemplo de puesta a tierra para que los lectores entiendan cómo aplicar estas técnicas en su propio trabajo.
Impressão causal em Python: Aplicação de causalidade na indústria de tecnologia Na indústria de tecnologia moderna em rápida evolução, compreender o impacto de nossas ações nos indicadores de negócios é fundamental para tomar decisões razoáveis. A conclusão causal é uma ferramenta poderosa que nos permite avaliar os efeitos das diferentes alavancas sobre os nossos resultados desejados, ajudando-nos a otimizar nossas estratégias e impulsionar o crescimento. Este livro «Causal Inference in Python: Applying Causal Inference in the Tech Industriy» fornece um guia completo sobre a aplicação de relações de causa e efeito na indústria tecnológica, com exemplos práticos e aplicativos reais. O autor, Matheus Facure, especialista sênior em dados no Nubank, explica, em grande parte, o potencial de conclusão causal não utilizado para avaliar efeitos e efeitos. O livro abrange métodos clássicos de causalidade, tais como testes de controle randomizados, testes A/B, regressão linear, controladores sintéticos de estimativas de inclinação e diferenças de diferenças. Cada método é acompanhado por uma aplicação na indústria, servindo de exemplo de terra para os leitores para entender como aplicar esses métodos em seu próprio trabalho.
Kausale Schlussfolgerung in Python: Anwendung kausaler Schlussfolgerungen in der Technologiebranche In der heutigen schnelllebigen Technologiebranche ist das Verständnis der Auswirkungen unseres Handelns auf die Geschäftsleistung entscheidend für fundierte Entscheidungen. Kausale Inferenz ist ein leistungsfähiges Werkzeug, das es uns ermöglicht, die Auswirkungen verschiedener Hebel auf unsere gewünschten Ergebnisse zu bewerten und uns dabei zu helfen, unsere Strategien zu optimieren und das Wachstum voranzutreiben. Dieses Buch „Causal Inference in Python: Applying Causal Inference in the Tech Industry“ bietet eine umfassende Anleitung zur Anwendung von Ursache-Wirkungs-Beziehungen in der Technologiebranche mit praktischen Beispielen und realen Anwendungen. Der Autor, Matheus Facure, Senior Data Scientist bei der Nubank, erklärt fachmännisch das weitgehend ungenutzte kausale Inferenzpotenzial zur Bewertung von Auswirkungen und Effekten. Das Buch behandelt klassische kausale Inferenzmethoden wie randomisierte Kontrollstudien, A/B-Tests, lineare Regression, synthetische Neigungsschätzungskontrollen und Unterschiede in Unterschieden. Jede Methode wird von einer Anwendung in der Branche begleitet und dient als Beispiel für die Erdung der ser, um zu verstehen, wie sie diese Methoden in ihrer eigenen Arbeit anwenden können.
''
Python'da Nedensel Çıkarım: Teknoloji Endüstrisine Nedensel Çıkarım Uygulamak Günümüzün gelişen teknoloji endüstrisinde, eylemlerimizin iş performansı üzerindeki etkisini anlamak, bilinçli kararlar almak için kritik öneme sahiptir. Nedensel çıkarım, farklı kaldıraçların arzu ettiğimiz sonuçlar üzerindeki etkisini değerlendirmemize, stratejilerimizi optimize etmemize ve büyümeyi sağlamamıza yardımcı olan güçlü bir araçtır. "Python'da Nedensel Çıkarım: Teknoloji Endüstrisinde Nedensel Çıkarım Uygulamak'adlı bu kitap, pratik örnekler ve gerçek dünya uygulamaları ile teknoloji endüstrisinde neden ve sonuç uygulamasına kapsamlı bir rehber sunmaktadır. Nubank'ta kıdemli bir veri bilimcisi olan yazar Matheus Facure, etkileri ve etkileri değerlendirmek için nedensel çıkarım için büyük ölçüde kullanılmayan potansiyeli ustalıkla açıklıyor. Kitap, randomize kontrol denemeleri, A/B testleri, doğrusal regresyon, sentetik eğilim skoru kontrolleri ve farklılıklardaki farklılıklar gibi klasik nedensel çıkarım yöntemlerini kapsamaktadır. Her yönteme, sektördeki bir uygulama eşlik eder ve okuyucuların bu yöntemleri kendi çalışmalarında nasıl uygulayacaklarını anlamaları için bir topraklama örneği olarak hizmet eder.
الاستدلال السببي في بايثون: تطبيق الاستدلال السببي على صناعة التكنولوجيا في صناعة التكنولوجيا المزدهرة اليوم، يعد فهم تأثير إجراءاتنا على أداء الأعمال أمرًا بالغ الأهمية لاتخاذ قرارات مستنيرة. الاستدلال السببي هو أداة قوية تسمح لنا بتقييم تأثير الرافعات المختلفة على النتائج المرجوة، مما يساعدنا على تحسين استراتيجياتنا ودفع النمو. يقدم هذا الكتاب، «الاستدلال السببي في بايثون: تطبيق الاستدلال السببي في صناعة التكنولوجيا»، دليلاً شاملاً لتطبيق السبب والنتيجة في صناعة التكنولوجيا، مع أمثلة عملية وتطبيقات في العالم الحقيقي. يشرح المؤلف، ماثيوس فاكور، عالم البيانات البارز في Nubank، بخبرة الإمكانات غير المستغلة إلى حد كبير للاستدلال السببي لتقييم التأثيرات والتأثيرات. يغطي الكتاب الطرق الكلاسيكية للاستدلال السببي، مثل تجارب التحكم العشوائية، واختبارات A/B، والانحدار الخطي، وضوابط درجة الميل الاصطناعي، والاختلافات في الاختلافات. كل طريقة مصحوبة بتطبيق في الصناعة، بمثابة مثال على الأساس للقراء لفهم كيفية تطبيق هذه الأساليب في عملهم الخاص.

You may also be interested in:

Causal Inference in Python Applying Causal Inference in the Tech Industry (Final)
Causal Inference in Python Applying Causal Inference in the Tech Industry (Final)
Causal Inference in Python: Applying Causal Inference in the Tech Industry
Causal Inference in Python (3rd Early Release)
Causal Inference
Fundamentals of Causal Inference With R
Causal Inference in Statistics: A Primer
Machine Learning for Causal Inference
Artificial Intelligence and Causal Inference
Machine Learning for Causal Inference
Machine Learning for Causal Inference
Observation and Experiment: An Introduction to Causal Inference
Causal Inference for Data Science (Final Release)
Elements of Causal Inference: Foundations and Learning Algorithms (Adaptive Computation and Machine Learning series)
Causal AI (MEAP v9)
Causal AI (MEAP v9)
Causality and Causal Explanation in Aristotle
Causal Categories in Discourse and Cognition
The Illusion of Determinism: Why Free Will Is Real and Causal
Sex Offending Causal Theories to Inform Research, Prevention, and Treatment
Mind, meaning, and mental disorder the nature of causal explanation in psychology and psychiatry
The Mind|s Arrows Bayes Nets and Graphical Causal Models in Psychology
The Bounds of Freedom: Kant|s Causal Theory of Action (Kantstudien-Erganzungshefte, 191)
By Paul Humphreys - The Chances of Explanation: Causal Explanation in the Social, Med (Reprint) (2014-07-29) [Paperback]
Education and Free Will: Spinoza, Causal Determinism and Moral Formation (Routledge International Studies in the Philosophy of Education)
Evidence-Based Technical Analysis: Applying the Scientific Method and Statistical Inference to Trading Signals
Python for AI Applying Machine Learning in Everyday Projects
Learning Algorithms for Internet of Things Applying Python Tools to Improve Data Collection Use for System Performance
Python (2nd Edition) Learn Python in a day and be a professional This book makes coding with Python easy Python for Beginners Learn to code with Python
Python (2nd Edition) Learn Python in a day and be a professional This book makes coding with Python easy Python for Beginners Learn to code with Python
Python: Python Programming Language for Beginners (learn how to code in python, computer programming, python crash course, python cookbook)
Python: 3 books in 1 : Python basics for Beginners + Python Automation Techniques And Web Scraping + Python For Data Science And Machine Learning
PYTHON: THE NO-NONSENSE GUIDE: Learn Python Programming Within 12 Hours! (Including a FREE Python Cheatsheet and 50+ Exercises With Original Python Files ) (Cyberpunk Programming Series Book 1)
Network programmability and Automation with python: The Ultimate Guide to Network Programmability with Python!Python Scripting for Network … with Python (Python Trailblazer|s Bible)
Python Desktop App Development with GUI: GUI Development Made Easy with Python! Build Feature-Rich Desktop Applications with Python. Transform Python Code … Applications (Python Trailblazer|s Bi
80+ Python Coding Challenges for Beginners: Python Exercises to Make You a Better Programmer. No Prior Experience Needed: 80+ Python Challenges to … Coding Journey. (Python Trailblazer|s Bible)
Illustrated Guide to Python 3 A Complete Walkthrough of Beginning Python with Unique Illustrations Showing how Python Really Works
Python Game Development : Creating Interactive Games With Python And Pygame Library (python programming Book 11)
Programming 3 Manuscripts Python Crash Course, Python Machine Learning and Python Data Science for Beginners
Python for Data Analysis Master Deep Learning With Python And Become Great At Programming.Python For Beginners