BOOKS - Predictive Data Modelling for Biomedical Data and Imaging
Predictive Data Modelling for Biomedical Data and Imaging - Poonam Tanwar, Tapas Kumar, K. Kalaiselvi, Haider Raza 2024 PDF River Publishers BOOKS
ECO~15 kg CO²

1 TON

Views
99846

Telegram
 
Predictive Data Modelling for Biomedical Data and Imaging
Author: Poonam Tanwar, Tapas Kumar, K. Kalaiselvi, Haider Raza
Year: 2024
Pages: 392
Format: PDF
File size: 19.4 MB
Language: ENG



Pay with Telegram STARS
The book covers topics such as machine learning, deep learning, and statistical modelling, providing readers with the tools they need to develop predictive models that can be used to analyze large datasets and make accurate predictions about patient outcomes. The book begins by introducing the concept of predictive data modelling and its importance in biomedical research and imaging, before delving into the technical details of various techniques and algorithms. It covers topics such as feature selection, dimensionality reduction, and model evaluation, providing readers with a solid foundation in the principles of predictive data modelling. The book also includes case studies and examples of real-world applications of predictive data modelling in biomedical research and imaging, demonstrating how these techniques can be used to improve patient outcomes and advance medical knowledge. As technology continues to evolve at an unprecedented pace, it is essential to understand the process of technological development and its impact on human society. Predictive data modelling is one of the most significant technological advancements of our time, with the potential to revolutionize healthcare and other fields. However, this technology must be developed with caution and consideration for its ethical implications.
Книга охватывает такие темы, как машинное обучение, глубокое обучение и статистическое моделирование, предоставляя читателям инструменты, необходимые для разработки прогностических моделей, которые можно использовать для анализа больших наборов данных и точного прогнозирования результатов лечения пациентов. Книга начинается с введения концепции прогностического моделирования данных и ее важности в биомедицинских исследованиях и визуализации, прежде чем углубиться в технические детали различных методов и алгоритмов. Он охватывает такие темы, как выбор признаков, уменьшение размерности и оценка модели, предоставляя читателям прочную основу в принципах прогнозного моделирования данных. Книга также включает тематические исследования и примеры реальных применений моделирования прогностических данных в биомедицинских исследованиях и визуализации, демонстрируя, как эти методы могут быть использованы для улучшения результатов лечения пациентов и улучшения медицинских знаний. Поскольку технологии продолжают развиваться беспрецедентными темпами, важно понимать процесс технологического развития и его влияние на человеческое общество. Прогнозное моделирование данных является одним из наиболее значительных технологических достижений нашего времени, которое может революционизировать здравоохранение и другие области. Однако эта технология должна разрабатываться с осторожностью и учетом ее этических последствий.
livre couvre des sujets tels que l'apprentissage automatique, l'apprentissage profond et la modélisation statistique, fournissant aux lecteurs les outils nécessaires pour développer des modèles prédictifs qui peuvent être utilisés pour analyser de grands ensembles de données et prédire avec précision les résultats du traitement des patients. livre commence par l'introduction du concept de modélisation prédictive des données et de son importance dans la recherche biomédicale et l'imagerie, avant d'approfondir les détails techniques des différentes méthodes et algorithmes. Il couvre des sujets tels que le choix des caractéristiques, la réduction de la dimension et l'évaluation du modèle, offrant aux lecteurs une base solide dans les principes de la modélisation prédictive des données. livre comprend également des études de cas et des exemples d'applications réelles de la modélisation des données prédictives dans la recherche biomédicale et l'imagerie, montrant comment ces méthodes peuvent être utilisées pour améliorer les résultats des patients et améliorer les connaissances médicales. Alors que la technologie continue d'évoluer à un rythme sans précédent, il est important de comprendre le processus de développement technologique et son impact sur la société humaine. La modélisation prédictive des données est l'une des avancées technologiques les plus importantes de notre époque, qui peut révolutionner les soins de santé et d'autres domaines. Toutefois, cette technologie doit être développée avec prudence et en tenant compte de ses implications éthiques.
libro aborda temas como el aprendizaje automático, el aprendizaje profundo y la simulación estadística, proporcionando a los lectores las herramientas necesarias para desarrollar modelos predictivos que puedan utilizarse para analizar grandes conjuntos de datos y predecir con precisión los resultados del tratamiento de los pacientes. libro comienza introduciendo el concepto de simulación predictiva de datos y su importancia en la investigación biomédica y la visualización antes de profundizar en los detalles técnicos de las diferentes técnicas y algoritmos. Abarca temas como la selección de rasgos, la reducción de la dimensión y la evaluación del modelo, proporcionando a los lectores una base sólida en los principios de la simulación predictiva de datos. libro también incluye estudios de casos y ejemplos de aplicaciones reales de la simulación de datos predictivos en la investigación biomédica y la visualización, demostrando cómo estas técnicas pueden ser utilizadas para mejorar los resultados del tratamiento de los pacientes y mejorar el conocimiento médico. A medida que la tecnología continúa evolucionando a un ritmo sin precedentes, es importante comprender el proceso de desarrollo tecnológico y su impacto en la sociedad humana. La simulación predictiva de datos es uno de los avances tecnológicos más significativos de nuestro tiempo que puede revolucionar la atención médica y otras áreas. n embargo, esta tecnología debe desarrollarse con cautela y teniendo en cuenta sus implicaciones éticas.
Il libro affronta argomenti come l'apprendimento automatico, l'apprendimento approfondito e la simulazione statistica, fornendo ai lettori gli strumenti necessari per sviluppare modelli predittivi che possono essere utilizzati per analizzare grandi set di dati e predire con precisione i risultati del trattamento dei pazienti. Il libro inizia introducendo il concetto di simulazione predittiva dei dati e la sua importanza nella ricerca biomedica e nella visualizzazione, prima di approfondire i dettagli tecnici di vari metodi e algoritmi. Include argomenti quali la scelta dei segni, la riduzione della dimensione e la valutazione del modello, fornendo ai lettori una base solida nei principi della simulazione dei dati. Il libro include anche studi di caso e esempi di applicazioni reali della simulazione dei dati predittivi nella ricerca biomedica e nella visualizzazione, dimostrando come questi metodi possano essere utilizzati per migliorare i risultati del trattamento dei pazienti e migliorare le conoscenze mediche. Poiché la tecnologia continua a crescere a un ritmo senza precedenti, è importante comprendere il processo di sviluppo tecnologico e il suo impatto sulla società umana. La simulazione predittiva dei dati è uno dei progressi tecnologici più significativi del nostro tempo, che può rivoluzionare l'assistenza sanitaria e altri settori. Tuttavia, questa tecnologia deve essere sviluppata con cautela e tenendo conto delle sue implicazioni etiche.
Das Buch behandelt Themen wie maschinelles rnen, Deep arning und statistische Modellierung und bietet den sern die Werkzeuge, die sie benötigen, um Vorhersagemodelle zu entwickeln, mit denen große Datensätze analysiert und die Behandlungsergebnisse von Patienten genau vorhergesagt werden können. Das Buch beginnt mit einer Einführung in das Konzept der prädiktiven Datenmodellierung und ihrer Bedeutung in der biomedizinischen Forschung und Bildgebung, bevor es in die technischen Details verschiedener Methoden und Algorithmen eintaucht. Es deckt Themen wie Merkmalsauswahl, Dimensionsreduktion und Modellbewertung ab und bietet den sern eine solide Grundlage in den Prinzipien der prädiktiven Datenmodellierung. Das Buch enthält auch Fallstudien und Beispiele für reale Anwendungen der prädiktiven Datenmodellierung in der biomedizinischen Forschung und Bildgebung und zeigt, wie diese Techniken verwendet werden können, um die Behandlungsergebnisse von Patienten zu verbessern und das medizinische Wissen zu verbessern. Da sich die Technologie in einem beispiellosen Tempo weiterentwickelt, ist es wichtig, den Prozess der technologischen Entwicklung und ihre Auswirkungen auf die menschliche Gesellschaft zu verstehen. Prädiktive Datenmodellierung ist eine der bedeutendsten technologischen Errungenschaften unserer Zeit, die das Gesundheitswesen und andere Bereiche revolutionieren könnte. Diese Technologie muss jedoch mit Sorgfalt und unter Berücksichtigung ihrer ethischen Implikationen entwickelt werden.
הספר מכסה נושאים כמו למידת מכונה, למידה עמוקה, ודוגמנות סטטיסטית, המספקים לקוראים את הכלים הדרושים לפיתוח מודלים מנבאים שניתן להשתמש בהם כדי לנתח נתונים גדולים ולחזות במדויק תוצאות מטופלות. הספר מתחיל בכך שהוא מציג את הרעיון של מודל נתונים מנבא וחשיבותו במחקר והדמיה ביו-רפואית, לפני שהוא מתעמק בפרטים הטכניים של שיטות ואלגוריתמים שונים. הוא מכסה נושאים כמו בחירת תכונה, צמצום מימדים והערכת מודלים, ומספק לקוראים בסיס מוצק לעקרונות של מודל נתונים מנבא. הספר כולל גם מחקרי מקרים ודוגמאות של יישומים בעולם האמיתי של מידול נתונים מנבאים במחקר והדמיה ביו-רפואית, המדגימים כיצד ניתן להשתמש בטכניקות אלה כדי לשפר את תוצאות המטופלים ואת הידע הרפואי. ככל שהטכנולוגיה ממשיכה להתקדם בקצב חסר תקדים, חשוב להבין את תהליך ההתפתחות הטכנולוגית ואת השפעתה על החברה האנושית. מודל נתונים חיזוי הוא אחד ההתקדמות הטכנולוגית המשמעותית ביותר של זמננו, עם פוטנציאל לחולל מהפכה בתחום הבריאות ותחומים אחרים. עם זאת, יש לפתח טכנולוגיה זו בזהירות ובהתחשבות בהשלכותיה האתיות.''
Kitap, makine öğrenimi, derin öğrenme ve istatistiksel modelleme gibi konuları kapsamakta, okuyuculara büyük veri kümelerini analiz etmek ve hasta sonuçlarını doğru bir şekilde tahmin etmek için kullanılabilecek öngörücü modeller geliştirmek için ihtiyaç duydukları araçları sunmaktadır. Kitap, tahmine dayalı veri modelleme kavramını ve biyomedikal araştırma ve görüntülemedeki önemini tanıtarak, çeşitli yöntem ve algoritmaların teknik ayrıntılarını incelemeden önce başlar. Özellik seçimi, boyutsallığın azaltılması ve model değerlendirmesi gibi konuları kapsar ve okuyuculara öngörücü veri modelleme ilkelerinde sağlam bir temel sağlar. Kitap ayrıca, biyomedikal araştırma ve görüntülemede öngörücü veri modellemenin gerçek dünyadaki uygulamalarının vaka incelemelerini ve örneklerini de içermekte ve bu tekniklerin hasta sonuçlarını ve tıbbi bilgileri iyileştirmek için nasıl kullanılabileceğini göstermektedir. Teknoloji benzeri görülmemiş bir hızda ilerlemeye devam ettikçe, teknolojik gelişme sürecini ve insan toplumu üzerindeki etkisini anlamak önemlidir. Tahmini veri modellemesi, zamanımızın en önemli teknolojik gelişmelerinden biridir ve sağlık hizmetlerinde ve diğer alanlarda devrim yaratma potansiyeline sahiptir. Ancak, bu teknoloji dikkatli ve etik etkileri dikkate alınarak geliştirilmelidir.
يغطي الكتاب مواضيع مثل التعلم الآلي والتعلم العميق والنمذجة الإحصائية، وتزويد القراء بالأدوات التي يحتاجونها لتطوير نماذج تنبؤية يمكن استخدامها لتحليل مجموعات البيانات الكبيرة والتنبؤ بدقة بنتائج المرضى. يبدأ الكتاب بتقديم مفهوم نمذجة البيانات التنبؤية وأهميته في البحث الطبي الحيوي والتصوير، قبل الخوض في التفاصيل التقنية لمختلف الأساليب والخوارزميات. وهو يغطي مواضيع مثل اختيار الميزات، والحد من الأبعاد، وتقييم النماذج، مما يوفر للقراء أساسًا متينًا في مبادئ نمذجة البيانات التنبؤية. يتضمن الكتاب أيضًا دراسات حالة وأمثلة لتطبيقات العالم الحقيقي لنمذجة البيانات التنبؤية في البحث الطبي الحيوي والتصوير، مما يوضح كيف يمكن استخدام هذه التقنيات لتحسين نتائج المرضى والمعرفة الطبية. ومع استمرار تقدم التكنولوجيا بوتيرة لم يسبق لها مثيل، من المهم فهم عملية التطور التكنولوجي وأثرها على المجتمع البشري. تعد نمذجة البيانات التنبؤية واحدة من أهم التطورات التكنولوجية في عصرنا، مع إمكانية إحداث ثورة في الرعاية الصحية ومجالات أخرى. ومع ذلك، يجب تطوير هذه التكنولوجيا بحذر ومراعاة آثارها الأخلاقية.
該書涵蓋了機器學習,深度學習和統計建模等主題,為讀者提供了開發預測模型所需的工具,這些模型可用於分析大型數據集並準確預測患者的治療結果。本書首先介紹了預測數據建模的概念及其在生物醫學研究和成像中的重要性,然後深入研究了各種方法和算法的技術細節。它涵蓋了特征選擇,尺寸減少和模型評估等主題,為讀者提供了預測數據建模原理的堅實基礎。該書還包括案例研究和預測數據建模在生物醫學研究和成像中的實際應用的示例,展示了如何利用這些技術來改善患者的治療結果並改善醫學知識。隨著技術繼續以前所未有的速度發展,必須了解技術發展及其對人類社會的影響。預測數據建模是我們時代最重要的技術進步之一,可以徹底改變醫療保健和其他領域。但是,必須謹慎開發該技術,並考慮到其倫理影響。

You may also be interested in:

Predictive Data Modelling for Biomedical Data and Imaging (River Publishers Series in Biotechnology and Medical Research)
Predictive Data Modelling for Biomedical Data and Imaging
Predictive Data Modelling for Biomedical Data and Imaging
Data Analytics: Practical Guide to Leveraging the Power of Algorithms, Data Science, Data Mining, Statistics, Big Data, and Predictive Analysis to Improve Business, Work, and Life
Data Analytics Practical Guide to Leveraging the Power of Algorithms, Data Science, Data Mining, Statistics, Big Data, and Predictive Analysis to Improve Business, Work, and Life
Data-Driven Modelling and Predictive Analytics in Business and Finance
Data-Driven Modelling and Predictive Analytics in Business and Finance
Big data A Guide to Big Data Trends, Artificial Intelligence, Machine Learning, Predictive Analytics, Internet of Things, Data Science, Data Analytics, Business Intelligence, and Data Mining
Modern Statistics with R From Wrangling and Exploring Data to Inference and Predictive Modelling Second Edition
Modern Statistics with R From Wrangling and Exploring Data to Inference and Predictive Modelling Second Edition
Statistical and Machine-Learning Data Mining Techniques for Better Predictive Modeling and Analysis of Big Data, Third Edition
Qlik Sense: Advanced Data Visualization for Your Organization: Create smart data visualizations and predictive analytics solutions
Data-Driven Modelling and Predictive Analytics in Business and Finance: Concepts, Designs, Technologies, and Applications (Advances in Computational Collective Intelligence)
Deciphering Data Architectures Choosing Between a Modern Data Warehouse, Data Fabric, Data Lakehouse, and Data Mesh
Deciphering Data Architectures Choosing Between a Modern Data Warehouse, Data Fabric, Data Lakehouse, and Data Mesh
Data Analytics and Python Programming 2 Bundle Manuscript Beginners Guide to Learn Data Analytics, Predictive Analytics and Data Science with Python Programming
Intelligent Data Analysis for Biomedical Applications Challenges and Solutions (Intelligent Data-Centric Systems Sensor Collected Intelligence)
Data Science 2 Books in 1 Python Programming & Python for Data Science, The Ultimate Guide to Learn Machine Learning and Predictive Analytics from Scratch with Hands-On Projects
Advanced Data Analytics with AWS Explore Data Analysis Concepts in the Cloud to Gain Meaningful Insights and Build Robust Data Engineering Workflows Across Diverse Data Sources
Advanced Data Analytics with AWS Explore Data Analysis Concepts in the Cloud to Gain Meaningful Insights and Build Robust Data Engineering Workflows Across Diverse Data Sources
Advanced Data Analytics with AWS: Explore Data Analysis Concepts in the Cloud to Gain Meaningful Insights and Build Robust Data Engineering Workflows Across Diverse Data Sources (English Edition)
The Data Revolution Big Data, Open Data, Data Infrastructures and Their Consequences
Data-Driven Modelling with Fuzzy Sets: Embracing Uncertainty (Intelligent Data-Driven Systems and Artificial Intelligence)
Data Modeling Made Simple with Embarcadero ER/Studio Data Architect Adapting to Agile Data Modeling in a Big Data World
Modern Data Architectures with Python: A practical guide to building and deploying data pipelines, data warehouses, and data lakes with Python
Data Analytics in the AWS Cloud: Building a Data Platform for BI and Predictive Analytics on AWS
Intelligent Data Analysis From Data Gathering to Data Comprehension (The Wiley Series in Intelligent Signal and Data Processing)
Implementing Data Mesh Design, Build, and Implement Data Contracts, Data Products, and Data Mesh
Implementing Data Mesh Design, Build, and Implement Data Contracts, Data Products, and Data Mesh
Intelligent Techniques for Predictive Data Analytics
Intelligent Techniques for Predictive Data Analytics
Intelligent Techniques for Predictive Data Analytics
Data Science from Scratch Want to become a Data Scientist? This guide for beginners will walk you through the world of Data Science, Big Data, Machine Learning and Deep Learning
Data Science With Rust A Comprehensive Guide - Data Analysis, Machine Learning, Data Visualization & More
Getting Started with DuckDB: A practical guide for accelerating your data science, data analytics, and data engineering workflows
Data Science With Rust A Comprehensive Guide - Data Analysis, Machine Learning, Data Visualization & More
Data Science With Rust: A Comprehensive Guide - Data Analysis, Machine Learning, Data Visualization and More
Hands-On Data Preprocessing in Python: Learn how to effectively prepare data for successful data analytics
Big Data, Data Mining and Data Science Algorithms, Infrastructures, Management and Security