BOOKS - Deep Learning for Video Understanding
Deep Learning for Video Understanding - Zuxuan Wu, Yu-Gang Jiang 2024 PDF | EPUB Springer BOOKS
ECO~12 kg CO²

1 TON

Views
30901

Telegram
 
Deep Learning for Video Understanding
Author: Zuxuan Wu, Yu-Gang Jiang
Year: 2024
Pages: 194
Format: PDF | EPUB
File size: 42.2 MB
Language: ENG



Pay with Telegram STARS
Deep Learning for Video Understanding Introduction The rapid development of deep learning techniques has revolutionized video understanding tasks such as object detection, segmentation, tracking, and recognition. This book provides a comprehensive overview of the current state-of-the-art methods for video understanding using deep learning techniques. It covers various applications of deep learning in computer vision, including image classification, object detection, semantic segmentation, instance segmentation, and video generation. The book also discusses the challenges and limitations of deep learning models in video understanding tasks and future research directions. Chapter 1: Introduction to Deep Learning * Overview of deep learning techniques and their applications in computer vision * Importance of deep learning in video understanding tasks * Brief history of deep learning and its evolution Chapter 2: Image Classification * Overview of image classification tasks and their importance in video understanding * Traditional methods for image classification (e. g. , SVM, k-NN) * Deep learning methods for image classification (e. g. , Convolutional Neural Networks, Recurrent Neural Networks) * Applications of image classification in video understanding (e. g. , object detection, scene understanding) Chapter 3: Object Detection * Overview of object detection tasks and their importance in video understanding * Traditional methods for object detection (e. g. , sliding window, HOG+SVM) * Deep learning methods for object detection (e. g. , YOLO, SSD, Faster R-CNN) * Applications of object detection in video understanding (e. g.
Глубокое обучение для понимания видео Введение Быстрая разработка методов глубокого обучения произвела революцию в таких задачах понимания видео, как обнаружение объектов, сегментация, отслеживание и распознавание. В этой книге представлен всесторонний обзор современных современных методов понимания видео с использованием методов глубокого обучения. Он охватывает различные приложения глубокого обучения в компьютерном зрении, включая классификацию изображений, обнаружение объектов, семантическую сегментацию, сегментацию экземпляров и генерацию видео. В книге также обсуждаются проблемы и ограничения моделей глубокого обучения в задачах понимания видео и будущих направлениях исследований. Глава 1: Введение в глубокое обучение * Обзор методов глубокого обучения и их применения в компьютерном зрении * Важность глубокого обучения в задачах понимания видео * Краткая история глубокого обучения и его развитие Глава 2: Классификация изображений * Обзор задач классификации изображений и их важность в понимании видео * Традиционные методы классификации изображений (например, SVM, k-NN) * Методы глубокого обучения для классификации изображений (например, сверточные нейронные сети, рекуррентные нейронные сети) * Применение классификации изображений в понимании видео (например, обнаружение объектов, понимание сцены) Глава 3: Обнаружение объектов * Обзор задач обнаружения объектов и их важность в понимании видео * Традиционные методы обнаружения объектов (например, скользящее окно, HOG + SVM) * Методы глубокого обучения для обнаружения объектов (например, YOLO, SSD, Faster R-CNN) * Приложения обнаружения объектов в понимании видео (например,
''

You may also be interested in:

Deep Learning for Video Understanding
Deep Learning for Video Understanding
Deep Learning for Video Understanding (Wireless Networks)
Understanding Deep Learning
Understanding Deep Learning
Understanding Deep Learning
Multimodal Scene Understanding Algorithms, Applications and Deep Learning
Understanding Deep Learning Application in Rare Event Prediction
Understanding Deep Learning Application in Rare Event Prediction
Human Pose Analysis Deep Learning Meets Human Kinematics in Video
Trends in Deep Learning Methodologies Algorithms, Applications, and Systems (Hybrid Computational Intelligence for Pattern Analysis and Understanding)
Deep Learning for Data Architects: Unleash the power of Python|s deep learning algorithms (English Edition)
Java Deep Learning Projects: Implement 10 real-world deep learning applications using Deeplearning4j and open source APIs
Deep Learning for the Life Sciences Applying Deep Learning to Genomics, Microscopy, Drug Discovery, and More First Edition
Getting started with Deep Learning for Natural Language Processing Learn how to build NLP applications with Deep Learning
Building Scalable Deep Learning Pipelines on AWS Develop, Train, and Deploy Deep Learning Models
Deep Learning fur die Biowissenschaften Einsatz von Deep Learning in Genomik, Biophysik, Mikroskopie und medizinischer Analyse
Deep Learning for Data Architects Unleash the power of Python|s deep learning algorithms
Anatomy of Deep Learning Principles: Writing a deep learning library from scratch (Japanese Edition)
Deep Learning for Data Architects Unleash the power of Python|s deep learning algorithms
Deep Learning for the Life Sciences Applying Deep Learning to Genomics, Microscopy, Drug Discovery, and More
Deep Learning for Finance Creating Machine & Deep Learning Models for Trading in Python
Deep Learning for Finance Creating Machine & Deep Learning Models for Trading in Python
Programming PyTorch for Deep Learning Creating and Deploying Deep Learning Applications First Edition
Deep Learning With Python Develop Deep Learning Models on Theano and TensorFlow using Keras
Practical Mathematics for AI and Deep Learning: A Concise yet In-Depth Guide on Fundamentals of Computer Vision, NLP, Complex Deep Neural Networks and Machine Learning (English Edition)
Deep Learning Beginner’s Guide to Learn the Realms of Deep Learning from A-Z
Mastering Deep Learning A Comprehensive Guide to Master Deep Learning
Mastering Deep Learning A Comprehensive Guide to Master Deep Learning
Hands-on Deep Learning A Guide to Deep Learning with Projects and Applications
Mastering Deep Learning: A Comprehensive Guide to Master Deep Learning
Neural Networks and Deep Learning Neural Networks & Deep Learning, Deep Learning, Big Data
Fundamentals of Machine & Deep Learning A Complete Guide on Python Coding for Machine and Deep Learning with Practical Exercises for Learners (Sachan Book 102)
Deep Learning with Python The Crash Course for Beginners to Learn the Basics of Deep Learning with Python Using TensorFlow, Keras and PyTorch
Beginning with Deep Learning Using TensorFlow A Beginners Guide to TensorFlow and Keras for Practicing Deep Learning Principle
Deep Learning with Python Comprehensive Beginners Guide to Learn and Understand the Realms of Deep Learning with Python
Deep Learning With Python Simple and Effective Tips and Tricks to Learn Deep Learning with Python
Google JAX Essentials A quick practical learning of blazing-fast library for Machine Learning and Deep Learning projects
Deep Learning With Python Advanced and Effective Strategies of Using Deep Learning with Python Theories
Shallow Learning vs. Deep Learning A Practical Guide for Machine Learning Solutions