BOOKS - Cybernetics, Human Cognition, and Machine Learning in Communicative Applicati...
Cybernetics, Human Cognition, and Machine Learning in Communicative Applications - Vinit Kumar Gunjan, Sabrina Senatore, Amit Kumar 2025 PDF Springer BOOKS
ECO~18 kg CO²

1 TON

Views
76836

Telegram
 
Cybernetics, Human Cognition, and Machine Learning in Communicative Applications
Author: Vinit Kumar Gunjan, Sabrina Senatore, Amit Kumar
Year: 2025
Pages: 424
Format: PDF
File size: 16.3 MB
Language: ENG



Pay with Telegram STARS
The book "Cybernetics, Human Cognition, and Machine Learning in Communicative Applications" explores the intersection of human cognition, machine learning, and cybernetics in communication applications. The author argues that understanding the development of technology is essential to the survival of humanity and the unity of people in a divided world. The book provides a comprehensive overview of the field of cybernetics, including its history, key concepts, and applications in various fields such as psychology, neuroscience, computer science, philosophy, and engineering. It also delves into the latest advancements in machine learning and their impact on human cognition and behavior. The book begins by discussing the need to study and understand the process of technological evolution, highlighting the importance of developing a personal paradigm for perceiving the technological process of developing modern knowledge. This paradigm is based on the idea that humans have always sought to improve their understanding of the world through the use of tools and technology, leading to an exponential growth in knowledge and innovation. However, this growth has not been without challenges, as new technologies often lead to the displacement of traditional ways of thinking and being. The author then delves into the concept of cybernetics, which refers to the study of communication and control in machines and living beings.
В книге «Кибернетика, человеческое познание и машинное обучение в коммуникативных приложениях» исследуется пересечение человеческого познания, машинного обучения и кибернетики в коммуникационных приложениях. Автор утверждает, что понимание развития технологий необходимо для выживания человечества и единства людей в разделенном мире. В книге представлен всесторонний обзор области кибернетики, включая её историю, ключевые концепции и приложения в различных областях, таких как психология, нейробиология, информатика, философия и инженерия. Он также углубляется в последние достижения в области машинного обучения и их влияние на человеческое познание и поведение. Книга начинается с обсуждения необходимости изучения и понимания процесса технологической эволюции, подчёркивая важность выработки личностной парадигмы восприятия технологического процесса развития современных знаний. Эта парадигма основана на идее, что люди всегда стремились улучшить свое понимание мира с помощью инструментов и технологий, что привело к экспоненциальному росту знаний и инноваций. Однако этот рост не обошелся без проблем, поскольку новые технологии часто приводят к смещению традиционных способов мышления и бытия. Затем автор углубляется в концепцию кибернетики, которая относится к изучению коммуникации и управления в машинах и живых существах.
''

You may also be interested in:

Cybernetics, Human Cognition, and Machine Learning in Communicative Applications
Human-in-the-Loop Machine Learning Active learning, annotation and human-computer interaction (MEAP)
Simple Machine Learning for Programmers Beginner|s Intro to Using Machine Learning, Deep Learning, and Artificial Intelligence for Practical Applications
Machine Learning for Beginners A Complete and Phased Beginner’s Guide to Learning and Understanding Machine Learning and Artificial Intelligence Algoritms
Machine Learning and Python for Human Behavior
The Alignment Problem Machine Learning and Human Values
Unobtrusive Observations of Learning in Digital Environments: Examining Behavior, Cognition, Emotion, Metacognition and Social Processes Using Learning … in Analytics for Learning and Teaching)
Python Machine Learning The Ultimate Guide for Beginners to Machine Learning with Python, Programming and Deep Learning, Artificial Intelligence, Neural Networks, and Data Science
Machine Learning and Python for Human Behavior, Emotion, and Health Status Analysis
Machine Learning and Python for Human Behavior, Emotion, and Health Status Analysis
Cognitive Behavior and Human Computer Interaction Based on Machine Learning Algorithms
Debugging Machine Learning Models with Python: Develop high-performance, low-bias, and explainable machine learning and deep learning models
Machine Learning for Business The Ultimate Artificial Intelligence & Machine Learning for Managers, Team Leaders and Entrepreneurs
Machine Learning for Beginners An Introductory Guide to Learn and Understand Artificial Intelligence, Neural Networks and Machine Learning
Building Machine Learning Systems Using Python Practice to Train Predictive Models and Analyze Machine Learning Results
Machine Learning in Production: Master the art of delivering robust Machine Learning solutions with MLOps (English Edition)
Applied Machine Learning and High-Performance Computing on AWS: Accelerate the development of machine learning applications following architectural best practices
Serverless Machine Learning with Amazon Redshift ML: Create, train, and deploy machine learning models using familiar SQL commands
Machine Learning for Data Streams with Practical Examples in MOA (Adaptive Computation and Machine Learning series)
Machine Learning Master Machine Learning Fundamentals for Beginners, Business Leaders and Aspiring Data Scientists
Online Machine Learning: A Practical Guide with Examples in Python (Machine Learning: Foundations, Methodologies, and Applications)
Machine Learning The Ultimate Guide to Understand AI Big Data Analytics and the Machine Learning’s Building Block Application in Modern Life
Machine Learning for Beginners Build and deploy Machine Learning systems using Python, 2nd Edition
Robust Machine Learning: Distributed Methods for Safe AI (Machine Learning: Foundations, Methodologies, and Applications)
Machine Learning A Guide to PyTorch, TensorFlow, and Scikit-Learn Mastering Machine Learning With Python
Machine Learning with Core ML 2 and Swift A beginner-friendly guide to integrating machine learning into your apps
Machine Learning: A Guide to PyTorch, TensorFlow, and Scikit-Learn: Mastering Machine Learning With Python
Machine Learning A Guide to PyTorch, TensorFlow, and Scikit-Learn Mastering Machine Learning With Python
Programming Machine Learning Machine Learning Basics Concepts + Artificial Intelligence + Python Programming + Python Machine Learning
Programming Machine Learning Machine Learning Basics Concepts + Artificial Intelligence + Python Programming + Python Machine Learning
Programming With Python 4 Manuscripts - Deep Learning With Keras, Convolutional Neural Networks In Python, Python Machine Learning, Machine Learning With Tensorflow
Computer Programming This Book Includes Machine Learning for Beginners, Machine Learning with Python, Deep Learning with Python, Python for Data Analysis
Machine Learning for Finance Master Financial Strategies with Python-Powered Machine Learning
Machine Learning for Beginners A Practical Guide to Understanding and Applying Machine Learning Concepts
Pragmatic Machine Learning with Python Learn How to Deploy Machine Learning Models in Production
Machine Learning for Finance Master Financial Strategies with Python-Powered Machine Learning
Machine Learning, Animated (Chapman and Hall CRC Machine Learning and Pattern Recognition)
Machine Learning for Absolute Beginners An Absolute beginner’s guide to learning and understanding machine learning successfully
Machine Learning with Python The Ultimate Guide to Learn Machine Learning Algorithms. Includes a Useful Section about Analysis, Data Mining and Artificial Intelligence in Business Applications
Machine Learning Tutorial: Machine Learning Simply Easy Learning