BOOKS - NETWORK TECHNOLOGIES - Machine Learning for Future Wireless Communications
Machine Learning for Future Wireless Communications - Fa-Long Luo 2020 PDF Wiley-IEEE Press BOOKS NETWORK TECHNOLOGIES
ECO~18 kg CO²

1 TON

Views
118302

 
Machine Learning for Future Wireless Communications
Author: Fa-Long Luo
Year: 2020
Pages: 475
Format: PDF
File size: 20.9 MB
Language: ENG



The book "Machine Learning for Future Wireless Communications" is a comprehensive guide to understanding the role of machine learning in shaping the future of wireless communication technology. The author, a renowned expert in the field, provides a detailed overview of the current state of wireless communication technology and explores how machine learning can be used to improve its performance, scalability, and reliability. The book covers topics such as the basics of machine learning, the application of machine learning algorithms in wireless communication, and the challenges and limitations of using machine learning in this field. It also discusses the potential benefits of integrating machine learning into wireless communication systems, including improved network performance, increased efficiency, and enhanced user experience. The need to study and understand the process of technology evolution is highlighted throughout the book, as the author emphasizes the importance of staying up-to-date with the latest advancements in machine learning and wireless communication technologies. The book encourages readers to develop their own personal paradigm for perceiving the technological process of developing modern knowledge, which is essential for survival in today's rapidly changing world. By doing so, readers will gain a deeper understanding of the interconnectedness of technology and humanity and be better equipped to navigate the complexities of the digital age. The book also touches on the possibility of developing a personal paradigm for perceiving the technological process of developing modern knowledge as the basis for the survival of humanity and the survival of the unification of people in a warring state.
Книга «Машинное обучение для будущих беспроводных коммуникаций» является всеобъемлющим руководством по пониманию роли машинного обучения в формировании будущего технологии беспроводной связи. Автор, известный эксперт в этой области, дает подробный обзор современного состояния технологии беспроводной связи и исследует, как машинное обучение можно использовать для повышения ее производительности, масштабируемости и надежности. Книга охватывает такие темы, как основы машинного обучения, применение алгоритмов машинного обучения в беспроводной связи, а также проблемы и ограничения использования машинного обучения в этой области. В нем также обсуждаются потенциальные преимущества интеграции машинного обучения в системы беспроводной связи, включая улучшенную производительность сети, повышенную эффективность и улучшенный пользовательский опыт. На протяжении всей книги подчеркивается необходимость изучения и понимания процесса эволюции технологий, поскольку автор подчеркивает важность оставаться в курсе последних достижений в области машинного обучения и технологий беспроводной связи. Книга призывает читателей выработать собственную личную парадигму восприятия технологического процесса развития современных знаний, которые необходимы для выживания в современном быстро меняющемся мире. Поступая таким образом, читатели получат более глубокое понимание взаимосвязанности технологий и человечества и будут лучше подготовлены к тому, чтобы ориентироваться в сложностях цифровой эпохи. В книге также затрагивается возможность выработки личностной парадигмы восприятия технологического процесса развития современного знания как основы выживания человечества и выживания объединения людей в воюющем государстве.
L'apprendimento automatico per le comunicazioni wireless future è una guida completa per comprendere il ruolo dell'apprendimento automatico nella formazione della tecnologia wireless futura. L'autore, noto esperto in questo campo, fornisce una panoramica dettagliata dello stato attuale della tecnologia wireless e indaga come l'apprendimento automatico può essere utilizzato per migliorarne le prestazioni, la scalabilità e l'affidabilità. Il libro affronta argomenti quali le basi dell'apprendimento automatico, l'applicazione degli algoritmi di apprendimento automatico nelle comunicazioni wireless e i problemi e le limitazioni dell'uso dell'apprendimento automatico in questo campo. tratta inoltre dei potenziali vantaggi dell'integrazione dell'apprendimento automatico nei sistemi wireless, tra cui prestazioni di rete migliorate, maggiore efficienza e maggiore esperienza utente. L'intero libro sottolinea la necessità di studiare e comprendere l'evoluzione della tecnologia, poiché l'autore sottolinea l'importanza di rimanere aggiornato sugli ultimi progressi nell'apprendimento automatico e nelle tecnologie wireless. Il libro invita i lettori a sviluppare il proprio paradigma personale di percezione del processo tecnologico di sviluppo delle conoscenze moderne, essenziali per la sopravvivenza in un mondo in continua evoluzione. In questo modo, i lettori avranno una maggiore comprensione dell'interconnessione tra tecnologia e umanità e saranno meglio preparati per orientarsi verso le complessità dell'era digitale. Il libro affronta anche la possibilità di sviluppare un paradigma personale per la percezione del processo tecnologico dello sviluppo della conoscenza moderna come base della sopravvivenza dell'umanità e della sopravvivenza dell'unione delle persone in uno stato in guerra.
''
Machine arning for Future Wireless Communicationsは、ワイヤレス技術の未来を形作るための機械学習の役割を理解するための包括的なガイドです。著者、分野の有名な専門家は、ワイヤレス技術の現在の状態の詳細な概要を提供し、そのパフォーマンス、スケーラビリティと信頼性を向上させるために機械学習がどのように使用できるかを探ります。本書では、機械学習の基礎、無線通信における機械学習アルゴリズムの適用、この分野における機械学習の使用の課題と限界などのトピックを取り上げています。また、ネットワーク性能の向上、効率の向上、ユーザーエクスペリエンスの向上など、機械学習をワイヤレス通信システムに統合することの潜在的な利点についても説明します。著者が機械学習とワイヤレス技術の最新の進歩を維持することの重要性を強調するように、本を通して、技術の進化を研究し理解する必要性が強調されています。この本は、現代の急速に変化する世界で生存するために必要な現代の知識の発展の技術的プロセスの認識のために、読者自身の個人的なパラダイムを開発することを奨励しています。そうすることで、読者は技術と人類の相互接続性をより深く理解し、デジタル時代の複雑さをナビゲートするためのより良い装備を得ることができます。この本はまた、人類の生存の基礎としての現代知識の発展の技術的プロセスの認識のための個人的なパラダイムを開発する可能性と戦争状態での人々の統一の生存に触れています。

You may also be interested in:

Machine Learning for Future Wireless Communications
Machine Learning and Wireless Communications
Applications of Machine Learning in Wireless Communications
OQAM/FBMC for Future Wireless Communications Principles, Technologies and Applications
Machine Learning and Deep Learning Techniques in Wireless and Mobile Networking Systems
Artificial Intelligence What You Need to Know About Machine Learning, Robotics, Deep Learning, Recommender Systems, Internet of Things, Neural Networks, Reinforcement Learning, and Our Future
Deep Reinforcement Learning for Wireless Communications and Networking: Theory, Applications and Implementation
Deep Reinforcement Learning for Wireless Communications and Networking Theory, Applications and Implementation
Distributed Artificial Intelligence for 5G/6G Communications Frameworks with Machine Learning
Federated Learning for Future Intelligent Wireless Networks
Federated Learning for Future Intelligent Wireless Networks
Federated Learning for Future Intelligent Wireless Networks
Cloud Computing Enabled Big-Data Analytics in Wireless Ad-hoc Networks (Wireless Communications and Networking Technologies)
Wireless AI Wireless Sensing, Positioning, IoT, and Communications
Simple Machine Learning for Programmers Beginner|s Intro to Using Machine Learning, Deep Learning, and Artificial Intelligence for Practical Applications
Machine Learning for Beginners A Complete and Phased Beginner’s Guide to Learning and Understanding Machine Learning and Artificial Intelligence Algoritms
Applications of Deep Machine Learning in Future Energy Systems
Applications of Deep Machine Learning in Future Energy Systems
Green Machine Learning Protocols for Future Communication Networks
Advances on Broadband and Wireless Computing, Communication and Applications: Proceedings of the 13th International Conference on Broadband and Wireless … and Communications Technologies Book 25
6G Visions for a Sustainable and People-centric Future: From Communications to Services, the CONASENSE Perspective (River Publishers Series in Communications and Networking)
Python Machine Learning The Ultimate Guide for Beginners to Machine Learning with Python, Programming and Deep Learning, Artificial Intelligence, Neural Networks, and Data Science
Debugging Machine Learning Models with Python: Develop high-performance, low-bias, and explainable machine learning and deep learning models
Machine Learning Applications in Subsurface Energy Resource Management: State of the Art and Future Prognosis
Introduction to Data Governance for Machine Learning Systems Fundamental Principles, Critical Practices, and Future Trends
Unsupervised Domain Adaptation: Recent Advances and Future Perspectives (Machine Learning: Foundations, Methodologies, and Applications)
Machine Learning for Beginners An Introductory Guide to Learn and Understand Artificial Intelligence, Neural Networks and Machine Learning
Building Machine Learning Systems Using Python Practice to Train Predictive Models and Analyze Machine Learning Results
Machine Learning for Business The Ultimate Artificial Intelligence & Machine Learning for Managers, Team Leaders and Entrepreneurs
Machine Learning in Production: Master the art of delivering robust Machine Learning solutions with MLOps (English Edition)
Applied Machine Learning and High-Performance Computing on AWS: Accelerate the development of machine learning applications following architectural best practices
Serverless Machine Learning with Amazon Redshift ML: Create, train, and deploy machine learning models using familiar SQL commands
Online Machine Learning: A Practical Guide with Examples in Python (Machine Learning: Foundations, Methodologies, and Applications)
Machine Learning Master Machine Learning Fundamentals for Beginners, Business Leaders and Aspiring Data Scientists
Machine Learning for Data Streams with Practical Examples in MOA (Adaptive Computation and Machine Learning series)
Machine Learning The Ultimate Guide to Understand AI Big Data Analytics and the Machine Learning’s Building Block Application in Modern Life
Machine Learning: A Guide to PyTorch, TensorFlow, and Scikit-Learn: Mastering Machine Learning With Python
Machine Learning for Beginners Build and deploy Machine Learning systems using Python, 2nd Edition
Machine Learning A Guide to PyTorch, TensorFlow, and Scikit-Learn Mastering Machine Learning With Python
Machine Learning A Guide to PyTorch, TensorFlow, and Scikit-Learn Mastering Machine Learning With Python