BOOKS - NATURAL SCIENCES - Лекции об уравнениях с частными производными...
Лекции об уравнениях с частными производными -  1961 PDF М. ФИЗМАТГИЗ BOOKS NATURAL SCIENCES
ECO~18 kg CO²

1 TON

Views
56445

Telegram
 
Лекции об уравнениях с частными производными
Year: 1961
Pages: 401
Format: PDF
File size: 16,3 MB
Language: RU



Pay with Telegram STARS
The book "Lectures on Partial Differential Equations" by the founder of the modern theory of differential equations is a comprehensive guide to understanding the evolution of technology and its impact on human society. The author, a renowned mathematician and professor at Moscow State University, delivers an in-depth exploration of three types of partial differential equations - elliptic, parabolic, and hyperbolic - and their applications in various fields of study. This book is essential reading for students pursuing degrees in mathematics, physics, engineering, and other related disciplines where partial differential equations play a crucial role. The text begins with an introduction to the fundamental concepts of partial differential equations, laying the groundwork for a deeper dive into the subject matter. The author expertly guides readers through the process of developing a personal paradigm for perceiving the technological advancements that shape our world, emphasizing the significance of this knowledge for the survival of humanity and the unity of people in a divided world. As the reader progresses through the chapters, they will gain a profound understanding of the interconnectedness of these equations and their practical applications in various fields, such as physics, engineering, and economics. The first type of partial differential equation discussed in the book is elliptic, which describes situations where the solution is always increasing or decreasing.
Книга «Лекции по дифференциальным уравнениям в частных производных» основоположника современной теории дифференциальных уравнений является всеобъемлющим руководством к пониманию эволюции технологии и ее влияния на человеческое общество. Автор, известный математик и профессор МГУ, проводит углубленное исследование трех типов дифференциальных уравнений в частных производных - эллиптических, параболических и гиперболических - и их приложений в различных областях изучения. Эта книга является важным чтением для студентов, получающих степени в области математики, физики, инженерии и других смежных дисциплин, где уравнения в частных производных играют решающую роль. Текст начинается с введения в фундаментальные понятия дифференциальных уравнений в частных производных, закладывая основу для более глубокого погружения в тематику. Автор мастерски направляет читателей через процесс разработки личной парадигмы восприятия технологических достижений, формирующих наш мир, подчеркивая значимость этих знаний для выживания человечества и единства людей в разделенном мире. По мере прохождения глав читатель получит глубокое понимание взаимосвязанности этих уравнений и их практического применения в различных областях, таких как физика, инженерия и экономика. Первый тип дифференциального уравнения в частных производных, обсуждаемый в книге, является эллиптическим, который описывает ситуации, когда решение всегда увеличивается или уменьшается.
livre « Conférences sur les équations différentielles en dérivées partielles » de la théorie moderne des équations différentielles est un guide complet pour comprendre l'évolution de la technologie et son impact sur la société humaine. L'auteur, un célèbre mathématicien et professeur de MGU, mène une étude approfondie de trois types d'équations différentielles dans les dérivées partielles - elliptiques, paraboliques et hyperboliques - et leurs applications dans différents domaines d'étude. Ce livre est une lecture importante pour les étudiants qui obtiennent des diplômes dans les domaines des mathématiques, de la physique, de l'ingénierie et d'autres disciplines connexes, où les équations dans les dérivés privés jouent un rôle décisif. texte commence par une introduction aux concepts fondamentaux des équations différentielles dans les dérivées partielles, jetant les bases d'une immersion plus profonde dans le sujet. L'auteur guide habilement les lecteurs à travers le processus de développement d'un paradigme personnel de perception des progrès technologiques qui façonnent notre monde, soulignant l'importance de ces connaissances pour la survie de l'humanité et l'unité des gens dans un monde divisé. Au fil des chapitres, le lecteur aura une compréhension approfondie de l'interconnexion de ces équations et de leur application pratique dans divers domaines tels que la physique, l'ingénierie et l'économie. premier type d'équation différentielle en dérivées partielles, discuté dans le livre, est elliptique, qui décrit les situations où la solution est toujours croissante ou décroissante.
libro «Conferencias sobre ecuaciones diferenciales en derivadas parciales» del fundador de la teoría moderna de ecuaciones diferenciales es una guía integral para entender la evolución de la tecnología y su impacto en la sociedad humana. autor, un reconocido matemático y profesor de la Universidad Estatal de Moscú, realiza un estudio en profundidad de tres tipos de ecuaciones diferenciales en derivadas parciales -elípticas, parabólicas e hiperbólicas- y sus aplicaciones en diferentes campos de estudio. Este libro es una lectura importante para los estudiantes que obtienen títulos en matemáticas, física, ingeniería y otras disciplinas relacionadas, donde las ecuaciones en derivadas parciales juegan un papel crucial. texto comienza introduciendo en los conceptos fundamentales ecuaciones diferenciales en derivadas parciales, sentando las bases para una inmersión más profunda en el tema. autor guía magistralmente a los lectores a través del proceso de elaboración del paradigma personal de percepción de los avances tecnológicos que forman nuestro mundo, destacando la importancia de este conocimiento para la supervivencia de la humanidad y la unidad de las personas en un mundo dividido. A medida que pasen los capítulos, el lector adquirirá una comprensión profunda de la interrelación de estas ecuaciones y sus aplicaciones prácticas en diversos campos como la física, la ingeniería y la economía. primer tipo de ecuación diferencial en derivadas parciales que se discute en el libro es la elíptica, que describe situaciones donde la solución siempre aumenta o disminuye.
O livro «Palestras sobre Equações Diferenciais em Derivados Privados», da Teoria Moderna de Equações Diferenciais, é um guia abrangente para compreender a evolução da tecnologia e seus efeitos na sociedade humana. O autor, um reconhecido matemático e professor da UIC, faz uma pesquisa aprofundada sobre três tipos de equações diferenciais em derivados privados - elípticos, parabólicos e hiperbólicos - e suas aplicações em diferentes áreas de estudo. Este livro é uma leitura importante para estudantes graduados em matemática, física, engenharia e outras disciplinas adjacentes, onde equações em derivados privados são cruciais. O texto começa com a introdução em conceitos fundamentais de equações diferenciais em derivados privados, criando as bases para uma imersão mais profunda no tema. O autor orienta os leitores através do processo de desenvolvimento de um paradigma pessoal de percepção dos avanços tecnológicos que formam o nosso mundo, enfatizando a importância desse conhecimento para a sobrevivência humana e a unidade das pessoas num mundo dividido. Conforme os capítulos passarem, o leitor terá uma compreensão profunda da interligação entre essas equações e suas aplicações práticas em vários campos, como física, engenharia e economia. O primeiro tipo de equação diferencial em derivados privados discutido no livro é elíptico, que descreve situações em que a decisão sempre aumenta ou diminui.
Il libro «Conferenze sulle equazioni differenziali in derivati privati», di base della moderna teoria delle equazioni differenziali, è una guida completa alla comprensione dell'evoluzione della tecnologia e del suo impatto sulla società umana. L'autore, un noto matematico e professore della UIE, sta conducendo una ricerca approfondita su tre tipi di equazioni differenziali in derivati privati - elittici, parabolici e iperbolici - e le loro applicazioni in diversi ambiti di studio. Questo libro è una lettura importante per gli studenti laureati in matematica, fisica, ingegneria e altre discipline correlate, dove le equazioni in derivati privati hanno un ruolo cruciale. Il testo inizia con l'introduzione nei concetti fondamentali delle equazioni differenziali in derivati privati, gettando le basi per una più profonda immersione nel tema. L'autore guida i lettori con abilità attraverso il processo di sviluppo del paradigma personale della percezione dei progressi tecnologici che formano il nostro mondo, sottolineando l'importanza di queste conoscenze per la sopravvivenza dell'umanità e dell'unità delle persone in un mondo diviso. Man mano che passeranno i capitoli, il lettore avrà una profonda comprensione dell'interconnessione tra queste equazioni e delle loro applicazioni pratiche in diversi campi, come la fisica, l'ingegneria e l'economia. Il primo tipo di equazione differenziale in derivati privati, discusso nel libro, è ellittico, che descrive situazioni in cui la soluzione aumenta o diminuisce sempre.
Das Buch „Vorlesungen über partielle Differentialgleichungen“ des Begründers der modernen Theorie der Differentialgleichungen ist ein umfassender itfaden zum Verständnis der Evolution der Technologie und ihrer Auswirkungen auf die menschliche Gesellschaft. Der Autor, ein bekannter Mathematiker und Professor an der MSU, führt eine eingehende Untersuchung der drei Arten von partiellen Differentialgleichungen - elliptische, parabolische und hyperbolische - und ihre Anwendungen in verschiedenen Bereichen der Studie. Dieses Buch ist eine wichtige ktüre für Studenten, die Abschlüsse in Mathematik, Physik, Ingenieurwesen und anderen verwandten Disziplinen erwerben, in denen partielle Gleichungen eine entscheidende Rolle spielen. Der Text beginnt mit einer Einführung in die Grundbegriffe partieller Differentialgleichungen und legt den Grundstein für ein tieferes Eintauchen in die Thematik. Der Autor führt die ser meisterhaft durch den Prozess der Entwicklung eines persönlichen Paradigmas der Wahrnehmung der technologischen Fortschritte, die unsere Welt prägen, und betont die Bedeutung dieses Wissens für das Überleben der Menschheit und die Einheit der Menschen in einer geteilten Welt. Im Verlauf der Kapitel erhält der ser ein tiefes Verständnis für die Wechselbeziehung dieser Gleichungen und ihre praktische Anwendung in verschiedenen Bereichen wie Physik, Ingenieurwesen und Wirtschaft. Die erste Art der partiellen Differentialgleichung, die im Buch diskutiert wird, ist elliptisch, was tuationen beschreibt, in denen die Lösung immer zunimmt oder abnimmt.
Książka „Wykłady o częściowych równaniach różniczkowych” założyciela współczesnej teorii równań różniczkowych jest kompleksowym przewodnikiem do zrozumienia ewolucji technologii i jej wpływu na społeczeństwo ludzkie. Autor, znany matematyk i profesor Moskiewskiego Uniwersytetu Państwowego, prowadzi dogłębne badania trzech rodzajów częściowych równań różniczkowych - eliptycznych, parabolicznych i hiperbolicznych - oraz ich zastosowania w różnych dziedzinach badań. Ta książka jest ważnym lekturą dla studentów realizujących dyplomy z matematyki, fizyki, inżynierii i innych pokrewnych dyscyplin, gdzie częściowe równania różniczkowe odgrywają kluczową rolę. Tekst rozpoczyna się od wprowadzenia do podstawowych pojęć równań różniczkowych, kładących podwaliny pod głębsze zanurzenie w temacie. Autor mistrzowsko prowadzi czytelników przez proces rozwijania osobistego paradygmatu postrzegania postępu technologicznego kształtującego nasz świat, podkreślając znaczenie tej wiedzy dla przetrwania ludzkości i jedności ludzi w podzielonym świecie. W trakcie realizacji rozdziałów czytelnik uzyska głębokie zrozumienie wzajemnych powiązań tych równań i ich praktycznego zastosowania w różnych dziedzinach, takich jak fizyka, inżynieria i ekonomia. Pierwszy rodzaj częściowego równania różniczkowego omówiony w książce jest eliptyczny, który opisuje sytuacje, w których rozwiązanie zawsze wzrasta lub maleje.
הספר ”הרצאות על משוואות דיפרנציאליות חלקיות” מאת מייסד התאוריה המודרנית של משוואות דיפרנציאליות הוא מדריך מקיף להבנת התפתחות הטכנולוגיה והשפעתה על החברה האנושית. המחבר, מתמטיקאי מפורסם ופרופסור באוניברסיטת מוסקבה, עורך מחקר מעמיק של שלושה סוגים של משוואות דיפרנציאליות חלקיות - אליפטיות, פרבוליות והיפרבוליות - ויישומן בתחומי מחקר שונים. ספר זה הוא קריאה חשובה עבור סטודנטים הרודפים אחר תארים במתמטיקה, פיזיקה, הנדסה ודיסציפלינות נלוות אחרות, בהן משוואות דיפרנציאליות חלקיות ממלאות תפקיד מכריע. הטקסט מתחיל בהקדמה למושגי היסוד של משוואות דיפרנציאליות חלקיות, ומניח את היסודות לטבילה עמוקה יותר של הנושא. המחבר מנחה במומחיות את הקוראים בתהליך של פיתוח פרדיגמה אישית לתפישת ההתקדמות הטכנולוגית שמעצבת את עולמנו, ומדגישה את חשיבות הידע הזה להישרדות האנושות ואחדות האנשים בעולם מפולג. ככל שתתקדם דרך הפרקים, הקורא ישיג הבנה עמוקה של הקשר ההדדי בין משוואות אלה לבין היישום המעשי שלהן בתחומים שונים, כגון פיזיקה, הנדסה וכלכלה. הסוג הראשון של משוואה דיפרנציאלית חלקית הנידונה בספר הוא אליפטי, המתאר מצבים בהם הפתרון תמיד גדל או יורד.''
Modern diferansiyel denklemler teorisinin kurucusunun "Kısmi Diferansiyel Denklemler Üzerine Dersler" kitabı, teknolojinin evrimini ve insan toplumu üzerindeki etkisini anlamak için kapsamlı bir kılavuzdur. Moskova Devlet Üniversitesi'nde ünlü bir matematikçi ve profesör olan yazar, üç tür kısmi diferansiyel denklemin (eliptik, parabolik ve hiperbolik) ve bunların çeşitli çalışma alanlarındaki uygulamalarının derinlemesine bir çalışmasını yürütmektedir. Bu kitap, kısmi diferansiyel denklemlerin çok önemli bir rol oynadığı matematik, fizik, mühendislik ve diğer ilgili disiplinlerde derece alan öğrenciler için önemli bir okumadır. Metin, kısmi diferansiyel denklemlerin temel kavramlarına bir giriş ile başlar ve konuya daha derin bir dalmanın temelini oluşturur. Yazar, dünyamızı şekillendiren teknolojik gelişmelerin algılanması için kişisel bir paradigma geliştirme sürecinde okuyuculara ustalıkla rehberlik eder ve bu bilginin insanlığın hayatta kalması ve bölünmüş bir dünyada insanların birliği için önemini vurgular. Bölümler boyunca ilerledikçe, okuyucu bu denklemlerin birbirine bağlılığını ve fizik, mühendislik ve ekonomi gibi çeşitli alanlardaki pratik uygulamalarını derinlemesine anlayacaktır. Kitapta tartışılan ilk kısmi diferansiyel denklem türü, çözümün her zaman arttığı veya azaldığı durumları tanımlayan eliptiktir.
كتاب «محاضرات حول المعادلات التفاضلية الجزئية» لمؤسس النظرية الحديثة للمعادلات التفاضلية هو دليل شامل لفهم تطور التكنولوجيا وتأثيرها على المجتمع البشري. أجرى المؤلف، وهو عالم رياضيات مشهور وأستاذ في جامعة موسكو الحكومية، دراسة متعمقة لثلاثة أنواع من المعادلات التفاضلية الجزئية - الإهليلجية والمكافئة والزائدية - وتطبيقاتها في مختلف مجالات الدراسة. يعد هذا الكتاب قراءة مهمة للطلاب الذين يسعون للحصول على درجات علمية في الرياضيات والفيزياء والهندسة والتخصصات الأخرى ذات الصلة، حيث تلعب المعادلات التفاضلية الجزئية دورًا حاسمًا. يبدأ النص بمقدمة للمفاهيم الأساسية للمعادلات التفاضلية الجزئية، مما يضع الأساس لانغماس أعمق في الموضوع. يرشد المؤلف القراء ببراعة من خلال عملية تطوير نموذج شخصي لتصور التقدم التكنولوجي الذي يشكل عالمنا، مع التأكيد على أهمية هذه المعرفة لبقاء البشرية ووحدة الناس في عالم منقسم. مع تقدمك في الفصول، سيكتسب القارئ فهمًا عميقًا للترابط بين هذه المعادلات وتطبيقها العملي في مختلف المجالات، مثل الفيزياء والهندسة والاقتصاد. النوع الأول من المعادلة التفاضلية الجزئية التي تمت مناقشتها في الكتاب هو القطب الناقص، والذي يصف الحالات التي يكون فيها الحل دائمًا في ازدياد أو تناقص.
현대 미분 방정식 이론의 창시자에 의한 "부분 미분 방정식에 관한 강의" 책은 기술의 진화와 인간 사회에 미치는 영향을 이해하기위한 포괄적 인 지침입니다. 모스크바 주립 대학의 유명한 수학자이자 교수 인 저자는 타원, 포물선 및 쌍곡선의 세 가지 유형의 부분 미분 방정식과 다양한 연구 분야에서의 응용에 대한 심층적 인 연구를 수행합니다. 이 책은 부분 미분 방정식이 중요한 역할을하는 수학, 물리, 공학 및 기타 관련 분야에서 학위를 추구하는 학생들에게 중요한 독서입니다. 텍스트는 부분 미분 방정식의 기본 개념에 대한 소개로 시작하여 주제에 더 깊이 몰입하기위한 토대를 마련합니다. 저자는 세계를 형성하는 기술 발전에 대한 인식을위한 개인적인 패러다임을 개발하는 과정을 통해 독자들을 능숙하게 안내하며, 인류의 생존과 분열 된 세계에서 사람들의 통일성에 대한이 지식의 중요성을 강조합니다. 장을 진행함에 따라 독자는 이러한 방정식의 상호 연결성과 물리, 공학 및 경제와 같은 다양한 분야에서의 실제 적용에 대해 깊이 이해하게됩니다. 이 책에서 논의 된 첫 번째 유형의 부분 미분 방정식은 타원형이며, 솔루션이 항상 증가하거나 감소하는 상황을 설명합니다.
現代微分方程式の創始者による本「偏微分方程式の講義」は、技術の進化とその人間社会への影響を理解するための包括的なガイドです。著者は、著名な数学者であり、モスクワ州立大学の教授であり、楕円、放物線、双曲線の3種類の偏微分方程式と、その応用を様々な研究分野で詳細に研究している。この本は、数学、物理学、工学、その他の関連分野の学位を追求する学生にとって重要な読書であり、偏微分方程式が重要な役割を果たします。テキストは、部分微分方程式の基本的な概念の紹介から始まり、主題に深く浸るための基礎を築きます。著者は、私たちの世界を形作る技術的進歩の認識のための個人的なパラダイムを開発する過程を通して読者を巧みに導き、人類の生存と分裂した世界における人々の団結のためのこの知識の重要性を強調します。チャプターを進めると、これらの方程式の相互連結性と、物理、工学、経済などの様々な分野での実用化についての深い理解が得られます。本書で議論されている最初のタイプの偏微分方程式は楕円であり、解が常に増加または減少している状況を記述する。
現代微分方程理論創始人的「偏微分方程講座」是了解技術演變及其對人類社會影響的全面指南。作者是一位著名的數學家和MSU教授,他深入研究了三種類型的偏微分方程-橢圓,拋物線和雙曲線-及其在各個研究領域的應用。本書是攻讀數學,物理,工程學和其他相關學科學位的重要讀物,其中偏導數方程起著至關重要的作用。文本首先介紹了偏微分方程的基本概念,為深入研究主題奠定了基礎。作者巧妙地指導讀者通過開發塑造我們世界的技術進步的個人範式的過程,強調了這種知識對人類生存和人類在分裂世界中的團結的重要性。隨著章節的進行,讀者將深入了解這些方程的相互聯系及其在物理,工程和經濟學等各個領域的實際應用。書中討論的偏微分方程的第一類是橢圓形,它描述了解決方案總是增加或減少的情況。

You may also be interested in:

Лекции об уравнениях с частными производными
Лекции об уравнениях с частными производными
Лекции об уравнениях с частными производными
Лекции об уравнениях с частными производными
Уравнения с частными производными
Уравнения с частными производными
Дифференциальные соотношения с частными производными
Дифференциальные соотношения с частными производными
Уравнения с частными производными (2003)
Теория уравнений с частными производными
Геометрическая теория уравнений с частными производными
Уравнения с частными производными параболического типа
Уравнения с частными производными эллиптического типа
Системы уравнений с частными производными и псевдогруппы Ли
Случайные поля и стохастические уравнения с частными производными
Геометрия гамильтоновых систем и уравнений с частными производными
Метод конечных элементов для уравнений с частными производными
Справочник по дифференциальным уравнениям с частными производными Точные решения
Эллиптические дифференциальные уравнения с частными производными второго порядка
Уравнения с частными производными для научных работников и инженеров
Задача Коши для линейных уравнений с частными производными гиперболического типа
Лекции об уравнениях математической физики
Дифференциальные уравнения и уравнения с частными производными
Вся физика в 15 уравнениях
Химия в уравнениях реакций
Асимптотические методы в уравнениях математической физики
Численные методы в сингулярных интегральных уравнениях
Степенная геометрия в алгебраических и дифференциальных уравнениях
Степенная геометрия в алгебраических и дифференциальных уравнениях
Всё о логарифмических уравнениях, неравенствах и их системах
Лекции. Статьи
Лекции по алгебре
Лекции об искусстве
Лекции по психосоматике
Клинические лекции
Лекции по психологии
Лекции об искусстве
Лекции по алгебре
Лекции о метафизике
Лекции. Статьи