BOOKS - Microservices for Machine Learning: Design, implement, and manage high-perfor...
Microservices for Machine Learning: Design, implement, and manage high-performance ML systems with microservices (English Edition) - Rohit Ranjan  PDF  BOOKS
ECO~27 kg CO²

2 TON

Views
96068

Telegram
 
Microservices for Machine Learning: Design, implement, and manage high-performance ML systems with microservices (English Edition)
Author: Rohit Ranjan
Format: PDF
File size: PDF 4.6 MB
Language: English



Pay with Telegram STARS
He is currently a PhD candidate at the University of Waterloo exploring the intersection of AI and blockchain. Suresh S is a seasoned software professional with over two decades of experience in designing and implementing large scale systems using microservices architecture He has worked with multiple Fortune 500 companies and has extensive knowledge of cloud computing containerization and DevOps practices. He is passionate about sharing his knowledge through public speaking and writing. Publisher's SummaryIn this book we explore the fusion of microservices and machine learning ML and its impact across industries We delve into the principles of microservices architecture and their application to ML development and deployment providing you with a comprehensive understanding of how these technologies can be used together to create scalable efficient and secure systems The book begins by establishing a foundation in microservices principles and core ML concepts before diving into practical aspects of design implementation and management of highperformance ML applications It covers data management strategies for ML including realtime data ingestion and data versioning as well as crucial aspects of securing ML microservices and using CI CD practices to streamline development and deployment Finally we examine realworld use cases showcasing how ML microservices are revolutionizing various industries alongside a glimpse into the exciting future trends shaping this evolving field.
В настоящее время он является кандидатом наук в Университете Ватерлоо, исследуя пересечение ИИ и блокчейна. Suresh S - опытный специалист в области программного обеспечения с более чем двадцатилетним опытом проектирования и внедрения крупномасштабных систем с использованием архитектуры микросервисов. Он работал с несколькими компаниями из списка Fortune 500 и обладает обширными знаниями в области контейнеризации облачных вычислений и практики DevOps. Он увлечен тем, что делится своими знаниями посредством публичных выступлений и письма. Резюме издателяВ этой книге мы исследуем слияние микросервисов и машинного обучения ML и его влияние на отрасли. Мы углубляемся в принципы архитектуры микросервисов и их применение для разработки и развертывания ML, предоставляя вам всестороннее понимание того, как эти технологии могут использоваться вместе для создания масштабируемых эффективных и безопасных систем. Книга начинается с создания основы в принципах микросервисов и основных концепциях ML, прежде чем погрузиться в практические аспекты реализации дизайна и управление высокопроизводительными приложениями ML. Он охватывает стратегии управления данными для ML, включая прием данных в режиме реального времени и управление версиями данных, а также важные аспекты защиты микросервисов ML и использования практик CI CD для оптимизации разработки и развертывания. Наконец, мы рассмотрим реальные примеры использования, демонстрирующие, как микросервисы ML революционизируют различные отрасли наряду со взглядом на захватывающие будущие тенденции, формирующие эту развивающуюся область.
Il est actuellement doctorat à l'Université de Waterloo, explorant l'intersection de l'IA et du blockchain. Suresh S est un expert logiciel expérimenté avec plus de vingt ans d'expérience dans la conception et la mise en œuvre de systèmes à grande échelle utilisant une architecture de microservices. Il a travaillé avec plusieurs sociétés figurant sur la liste Fortune 500 et possède une vaste connaissance de la conteneurisation du cloud computing et de la pratique de DevOps. Il est passionné par le partage de ses connaissances à travers des interventions publiques et l'écriture. Résumé de l'éditeurDans ce livre, nous explorons la fusion des microservices et de l'apprentissage automatique ML et son impact sur les industries. Nous approfondirons les principes de l'architecture des microservices et leur application pour le développement et le déploiement de ML, vous offrant une compréhension complète de la façon dont ces technologies peuvent être utilisées ensemble pour créer des systèmes évolutifs, efficaces et sécurisés. livre commence par créer une base dans les principes des microservices et les concepts de base de ML, avant de s'immerger dans les aspects pratiques de la mise en œuvre de la conception et de la gestion des applications de ML haute performance. Il couvre les stratégies de gestion des données pour ML, y compris la réception des données en temps réel et la gestion des versions des données, ainsi que les aspects importants de la protection des microservices ML et de l'utilisation des pratiques CI CD pour optimiser le développement et le déploiement. Enfin, nous examinerons des exemples réels d'utilisation montrant comment les microservices ML révolutionnent différentes industries, ainsi qu'un regard sur les tendances futures passionnantes qui façonnent ce domaine en évolution.
Actualmente es candidato de Ciencias por la Universidad de Waterloo, investigando la intersección de IA y blockchain. Suresh S es un experto en software con más de veinte de experiencia en el diseño e implementación de sistemas a gran escala utilizando la arquitectura de microservicios. Ha trabajado con varias empresas de la lista Fortune 500 y tiene un amplio conocimiento en el campo de la computación en la nube contenedor y las prácticas de DevOps. apasiona compartir sus conocimientos a través de las apariciones públicas y la escritura. Resumen del editorEn este libro exploramos la fusión de microservicios y aprendizaje automático de ML y su impacto en las industrias. Profundizamos en los principios de la arquitectura de microservicios y sus aplicaciones para el desarrollo e implementación de ML, brindándole una comprensión completa de cómo estas tecnologías se pueden usar juntas para crear sistemas escalables eficientes y seguros. libro comienza con la creación de una base en los principios de microservicios y conceptos básicos de ML antes de sumergirse en los aspectos prácticos de la implementación del diseño y la gestión de aplicaciones de ML de alto rendimiento. Abarca estrategias de gestión de datos para ML, incluida la recepción de datos en tiempo real y la gestión de versiones de datos, así como aspectos importantes de la protección de microservicios ML y el uso de prácticas de CD de CI para optimizar el desarrollo y la implementación. Finalmente, veremos ejemplos reales de uso que demuestran cómo los microservicios de ML están revolucionando diferentes industrias junto con una visión de las emocionantes tendencias futuras que forman este campo en desarrollo.
Derzeit ist er Doktorand an der University of Waterloo und erforscht die Schnittstelle von KI und Blockchain. Suresh S ist ein erfahrener Softwarespezialist mit mehr als zwanzig Jahren Erfahrung in der Konzeption und Implementierung von Großsystemen mit Microservices-Architektur. Er hat mit mehreren Fortune-500-Unternehmen zusammengearbeitet und verfügt über umfassende Kenntnisse der Cloud-Computing-Containerisierung und DevOps-Praktiken. Er ist leidenschaftlich daran interessiert, sein Wissen durch öffentliche Reden und Schreiben zu teilen. Publisher ZusammenfassungIn diesem Buch untersuchen wir die Verschmelzung von Microservices und ML Machine arning und ihre Auswirkungen auf Branchen. Wir vertiefen uns in die Prinzipien der Microservices-Architektur und deren Anwendung für die ML-Entwicklung und -Bereitstellung und geben Ihnen ein umfassendes Verständnis dafür, wie diese Technologien zusammen genutzt werden können, um skalierbare, effiziente und sichere Systeme zu schaffen. Das Buch beginnt mit der Schaffung einer Grundlage in den Prinzipien von Microservices und ML-Kernkonzepten, bevor es in die praktischen Aspekte der Designumsetzung und des Managements von ML-Hochleistungsanwendungen eintaucht. Es umfasst Datenmanagementstrategien für ML, einschließlich Echtzeitdatenempfang und Datenversionierung, sowie wichtige Aspekte der cherung von ML Microservices und des Einsatzes von CI CD-Praktiken zur Optimierung von Entwicklung und Bereitstellung. Schließlich werfen wir einen Blick auf reale Anwendungsfälle, die zeigen, wie ML Microservices verschiedene Branchen revolutionieren, zusammen mit einem Blick auf die spannenden Zukunftstrends, die diesen aufstrebenden Bereich prägen.
''
Şu anda Waterloo Üniversitesi'nde AI ve blockchain'in kesişimini araştıran bir doktora adayı. Suresh S, mikro hizmet mimarisini kullanarak büyük ölçekli sistemleri tasarlama ve uygulama konusunda yirmi yılı aşkın deneyime sahip deneyimli bir yazılım uzmanıdır. Birkaç Fortune 500 şirketiyle çalıştı ve bulut konteynerizasyonu ve DevOps uygulamaları hakkında geniş bilgiye sahip. Bilgilerini halka açık konuşma ve yazma yoluyla paylaşma konusunda tutkulu. Bu kitapta, ML'nin mikro hizmetlerinin ve makine öğreniminin birleşmesini ve endüstriler üzerindeki etkisini inceliyoruz. Mikro hizmet mimarisinin ilkelerini ve bunların ML geliştirme ve dağıtımına uygulamalarını inceleyerek, bu teknolojilerin ölçeklenebilir, verimli ve güvenli sistemler oluşturmak için birlikte nasıl kullanılabileceğini kapsamlı bir şekilde anlamanızı sağlıyoruz. Kitap, tasarım uygulamasının pratik yönlerini ve yüksek performanslı ML uygulamalarının yönetimini incelemeden önce mikro hizmet ilkelerine ve ML'nin temel kavramlarına temel atarak başlar. Gerçek zamanlı veri alımı ve veri sürümü oluşturma dahil olmak üzere ML için veri yönetimi stratejilerinin yanı sıra ML mikro servislerini korumanın ve geliştirme ve dağıtımı optimize etmek için CD CI uygulamalarını kullanmanın önemli yönlerini kapsar. Son olarak, ML mikro hizmetlerinin farklı endüstrilerde nasıl devrim yarattığını gösteren gerçek dünyadaki kullanım durumlarına ve bu gelişmekte olan alanı şekillendiren heyecan verici gelecek trendlerine bir göz atıyoruz.
وهو حاليًا مرشح دكتوراه في جامعة واترلو، ويبحث في تقاطع الذكاء الاصطناعي و blockchain. Suresh S هو محترف برمجيات متمرس لديه أكثر من عقدين من الخبرة في تصميم وتنفيذ أنظمة واسعة النطاق باستخدام بنية الخدمات الدقيقة. لقد عمل مع العديد من شركات Fortune 500 ولديه معرفة واسعة بحاويات السحابة وممارسات DevOps. إنه شغوف بمشاركة معرفته من خلال الخطابة والكتابة. ملخص الناشر في هذا الكتاب، نستكشف دمج خدمات ML الدقيقة والتعلم الآلي وتأثيرها على الصناعات. نحن نتعمق في مبادئ بنية الخدمات الدقيقة وتطبيقها على تطوير ML ونشرها، مما يوفر لك فهمًا شاملاً لكيفية استخدام هذه التقنيات معًا لإنشاء أنظمة قابلة للتطوير وفعالة وآمنة. يبدأ الكتاب بوضع الأساس في مبادئ الخدمات الدقيقة والمفاهيم الأساسية لـ ML، قبل الخوض في الجوانب العملية لتنفيذ التصميم وإدارة تطبيقات ML عالية الأداء. وهو يغطي استراتيجيات إدارة البيانات المتعلقة بالرسوم المتحركة، بما في ذلك استقبال البيانات في الوقت الحقيقي وتحريرها، فضلاً عن الجوانب الهامة لحماية الخدمات المجهرية للرسوم المتحركة واستخدام ممارسات CD CI لتحسين التطوير والنشر. أخيرًا، نلقي نظرة على حالات الاستخدام في العالم الحقيقي التي توضح كيف تحدث خدمات ML الصغيرة ثورة في الصناعات المختلفة جنبًا إلى جنب مع نظرة على الاتجاهات المستقبلية المثيرة التي تشكل هذا المجال الناشئ.

You may also be interested in:

Machine Learning For Beginners Step-by-Step Guide to Machine Learning, a Beginners Approach to Artificial Intelligence, Big Data, Basic Python Algorithms, and Techniques for Business (Practical Exampl
Ultimate Machine Learning with Scikit-Learn Unleash the Power of Scikit-Learn and Python to Build Cutting-Edge Predictive Modeling Applications and Unlock Deeper Insights Into Machine Learning
Ultimate Java for Data Analytics and Machine Learning Unlock Java|s Ecosystem for Data Analysis and Machine Learning Using WEKA, JavaML, JFreeChart, and Deeplearning4j
Ultimate Java for Data Analytics and Machine Learning Unlock Java|s Ecosystem for Data Analysis and Machine Learning Using WEKA, JavaML, JFreeChart, and Deeplearning4j
Python Machine Learning: Everything You Should Know About Python Machine Learning Including Scikit Learn, Numpy, PyTorch, Keras And Tensorflow With Step-By-Step Examples And PRACTICAL Exercises
Artificial Intelligence What You Need to Know About Machine Learning, Robotics, Deep Learning, Recommender Systems, Internet of Things, Neural Networks, Reinforcement Learning, and Our Future
Machine Learning Infrastructure and Best Practices for Software Engineers: Take your machine learning software from a prototype to a fully fledged software system
Ultimate Machine Learning with Scikit-Learn: Unleash the Power of Scikit-Learn and Python to Build Cutting-Edge Predictive Modeling Applications and Unlock … Into Machine Learning (English Editi
Machine Learning with Python Advanced and Effective Strategies Using Machine Learning with Python Theories
Machine Learning in Python Hands on Machine Learning with Python Tools, Concepts and Techniques
Cracking The Machine Learning Interview 225 Machine Learning Interview Questions with Solutions
Machine Learning For Beginners A Comprehensive Beginners Guide To Machine Learning, No Experience Required!
Mastering Classification Algorithms for Machine Learning: Learn how to apply Classification algorithms for effective Machine Learning solutions (English Edition)
Machine Learning With Python Programming 2023 A Beginners Guide The Definitive Guide to Mastering Machine Learning in Python and a Problem-Guide Solver to Creating Real-World Intelligent Systems
Machine Learning With Python Programming 2023 A Beginners Guide The Definitive Guide to Mastering Machine Learning in Python and a Problem-Guide Solver to Creating Real-World Intelligent Systems
How to Design, Implement and Analyse a Survey (How to Research Guides)
Deep Machine Learning Complete Tips and Tricks to Deep Machine Learning
Machine Learning in Trading: Step by step implementation of Machine Learning models
Linear Algebra And Optimization With Applications To Machine Learning - Volume II Fundamentals of Optimization Theory with Applications to Machine Learning
Mastering ChatGPT and Google Colab for Machine Learning Automate AI Workflows and Fast-Track Your Machine Learning Tasks with the Power of ChatGPT, Google Colab, and Python
Python Machine Learning Discover the Essentials of Machine Learning, Data Analysis, Data Science, Data Mining and Artificial Intelligence Using Python Code with Python Tricks
Hands-on Supervised Learning with Python Learn How to Solve Machine Learning Problems with Supervised Learning Algorithms
Financial Modeling Using Quantum Computing: Design and manage quantum machine learning solutions for financial analysis and decision making
Mastering Excel VBA and Machine Learning A Complete, Step-by-Step Guide To Learn and Master Excel VBA and Machine Learning From Scratch
Signal Processing and Machine Learning for Brain-Machine Interfaces
Machine Learning with Python Advanced Guide in Machine Learning with Python
Programming-Based Formal Languages and Automata Theory Design, Implement, Validate, and Prove
Programming-Based Formal Languages and Automata Theory Design, Implement, Validate, and Prove
Domain-Driven Design And Microservices Explained with Examples
Machine Learning with Python 3 in 1 Beginners Guide + Step by Step Methods + Advanced Methods and Strategies to Learn Machine Learning with Python
Machine Learning and Optimization for Engineering Design (Engineering Optimization: Methods and Applications)
Machine Learning with Neural Networks An In-depth Visual Introduction with Python Make Your Own Neural Network in Python A Simple Guide on Machine Learning with Neural Networks
Machine Learning with Python A Step-By-Step Guide to Learn and Master Python Machine Learning
Machine Learning with Python Cookbook Practical Solutions from Preprocessing to Deep Learning
Learning Kernel Classifiers: Theory and Algorithms (Adaptive Computation and Machine Learning)
Machine Learning Master Supervised and Unsupervised Learning Algorithms with Real Examples
Artificial Intelligence and Machine Learning Foundations Learning from experience, 2nd Edition
Artificial Intelligence and Machine Learning Foundations Learning from experience, 2nd Edition
Bio-inspired Algorithms in Machine Learning and Deep Learning for Disease Detection
Machine Learning and Deep Learning Techniques in Wireless and Mobile Networking Systems