BOOKS - Building Generative AI-Powered Apps A Hands-on Guide for Developers
Building Generative AI-Powered Apps A Hands-on Guide for Developers - Aarushi Kansal 2024 PDF Apress BOOKS
ECO~12 kg CO²

1 TON

Views
68386

Telegram
 
Building Generative AI-Powered Apps A Hands-on Guide for Developers
Author: Aarushi Kansal
Year: 2024
Pages: 175
Format: PDF
File size: 15.9 MB
Language: ENG



Pay with Telegram STARS
Book Description: Building Generative AI-Powered Apps: A Hands-On Guide for Developers is a comprehensive guide that provides a step-by-step approach to creating generative AI-powered apps using popular frameworks such as TensorFlow, PyTorch, and Keras. This book covers the fundamentals of machine learning and deep learning, along with practical examples and projects to help developers build intelligent applications that can learn from data and make decisions autonomously. The book also explores the ethical implications of AI development and the importance of responsible AI practices. The book begins by introducing the concept of generative AI and its potential applications in various industries. It then delves into the basics of machine learning and deep learning, explaining the mathematical concepts and algorithms used in these technologies. The next section discusses the different types of generative models, including GANs, VAEs, and transformers, and their use cases. The book also covers the implementation of these models in popular frameworks like TensorFlow, PyTorch, and Keras. The following sections focus on real-world projects that demonstrate the application of generative AI in various domains, such as computer vision, natural language processing, and audio processing. The book concludes with a discussion on the ethical considerations of AI development and the need for responsible AI practices. Book Outline: I. Introduction to Generative AI * Definition and Applications * Overview of Machine Learning and Deep Learning II.
Создание генеративных приложений на основе искусственного интеллекта: Практическое руководство для разработчиков - это всеобъемлющее руководство, которое предоставляет пошаговый подход к созданию генеративных приложений на основе искусственного интеллекта с использованием популярных фреймворков, таких как TensorFlow, PyTorch и Keras. Эта книга охватывает основы машинного обучения и глубокого обучения, а также практические примеры и проекты, помогающие разработчикам создавать интеллектуальные приложения, которые могут учиться на данных и принимать решения автономно. В книге также рассматриваются этические последствия развития ИИ и важность ответственной практики ИИ. Книга начинается с введения понятия генеративного ИИ и его потенциальных применений в различных отраслях. Затем он углубляется в основы машинного обучения и глубокого обучения, объясняя математические концепции и алгоритмы, используемые в этих технологиях. В следующем разделе обсуждаются различные типы генеративных моделей, включая GAN, VAE и трансформаторы, а также их сценарии использования. Книга также охватывает реализацию этих моделей в популярных фреймворках, таких как TensorFlow, PyTorch и Keras. Следующие разделы посвящены реальным проектам, которые демонстрируют применение генеративного ИИ в различных областях, таких как компьютерное зрение, обработка естественного языка и обработка звука. Книга завершается обсуждением этических соображений развития ИИ и необходимости ответственных практик ИИ. Структура книги: I. Введение в определение и приложения генеративного ИИ * Обзор машинного обучения и глубокого обучения II.
Créer des applications génériques basées sur l'intelligence artificielle : un guide pratique pour les développeurs est un guide complet qui fournit une approche étape par étape pour créer des applications génériques basées sur l'intelligence artificielle en utilisant des cadres populaires tels que TensorFlow, PyTorch et Keras. Ce livre couvre les bases de l'apprentissage automatique et de l'apprentissage profond, ainsi que des exemples pratiques et des projets qui aident les développeurs à créer des applications intelligentes qui peuvent apprendre des données et prendre des décisions de manière autonome. livre examine également les conséquences éthiques du développement de l'IA et l'importance des pratiques responsables en la matière. livre commence par l'introduction de la notion d'IA générative et de ses applications potentielles dans différents secteurs. Il approfondit ensuite les bases de l'apprentissage automatique et de l'apprentissage profond en expliquant les concepts mathématiques et les algorithmes utilisés dans ces technologies. La section suivante traite des différents types de modèles génériques, y compris les GAN, les VAE et les transformateurs, ainsi que de leurs cas d'utilisation. livre couvre également la mise en œuvre de ces modèles dans des cadres populaires tels que TensorFlow, PyTorch et Keras. s sections suivantes sont consacrées à des projets réels qui démontrent l'application de l'IA générative dans divers domaines tels que la vision par ordinateur, le traitement du langage naturel et le traitement du son. livre conclut en discutant des considérations éthiques du développement de l'IA et de la nécessité de pratiques responsables en matière d'IA. Structure du livre : I. Introduction à la définition et aux applications de l'IA générative * Aperçu de l'apprentissage machine et de l'apprentissage profond II.
Creación de aplicaciones generativas basadas en inteligencia artificial: Una guía práctica para desarrolladores es una guía integral que proporciona un enfoque paso a paso para crear aplicaciones generativas basadas en inteligencia artificial utilizando marcos populares como TensorFlow, PyTorch y Keras. Este libro cubre los fundamentos del aprendizaje automático y el aprendizaje profundo, así como ejemplos prácticos y proyectos que ayudan a los desarrolladores a crear aplicaciones inteligentes que pueden aprender de los datos y tomar decisiones de forma autónoma. libro también examina las implicaciones éticas del desarrollo de la IA y la importancia de la práctica responsable de la IA. libro comienza con la introducción del concepto de IA generativa y sus posibles aplicaciones en diversas industrias. Luego profundiza en los fundamentos del aprendizaje automático y el aprendizaje profundo, explicando los conceptos matemáticos y los algoritmos utilizados en estas tecnologías. En la siguiente sección se analizan los diferentes tipos de modelos generativos, incluyendo GAN, VAE y transformadores, así como sus escenarios de uso. libro también cubre la implementación de estos modelos en marcos populares como TensorFlow, PyTorch y Keras. siguientes secciones se centran en proyectos reales que demuestran la aplicación de la IA generativa en diferentes campos, como la visión por ordenador, el procesamiento del lenguaje natural y el procesamiento del sonido. libro concluye con un debate sobre las consideraciones éticas para el desarrollo de la IA y la necesidad de prácticas de IA responsables. Estructura del libro: I. Introducción a la definición y aplicaciones de la IA generativa * Descripción general del aprendizaje automático y el aprendizaje profundo II.
Creazione di applicazioni generative basate sull'intelligenza artificiale: La guida pratica per gli sviluppatori è una guida completa che fornisce un approccio passo passo alla creazione di applicazioni generative basate sull'intelligenza artificiale utilizzando frame popolari come TensorFlow, PyTorch e Keras. Questo libro include le basi dell'apprendimento automatico e dell'apprendimento approfondito, nonché esempi pratici e progetti che aiutano gli sviluppatori a creare applicazioni intelligenti in grado di imparare dai dati e prendere decisioni in modo autonomo. Il libro affronta anche gli effetti etici dello sviluppo dell'IA e l'importanza della pratica responsabile dell'IA. Il libro inizia introducendo il concetto di IA generale e le sue potenziali applicazioni in diversi settori. Poi si approfondisce nelle basi dell'apprendimento automatico e dell'apprendimento profondo, spiegando i concetti matematici e gli algoritmi utilizzati in queste tecnologie. La sezione seguente affronta diversi tipi di modelli generali, tra cui GAN, VAE e trasformatori, nonché i relativi scenari di utilizzo. Il libro comprende anche l'implementazione di questi modelli in cornici popolari come TensorFlow, PyTorch e Keras. sezioni seguenti riguardano progetti reali che dimostrano l'applicazione dell'IA generale in diversi ambiti, come la visione informatica, l'elaborazione del linguaggio naturale e l'elaborazione del suono. Il libro si conclude con un dibattito sulle considerazioni etiche dello sviluppo dell'IA e sulla necessità di pratiche di IA responsabili. Struttura del libro: I. Introduzione alla definizione e alle applicazioni dell'IA generale * Panoramica dell'apprendimento automatico e dell'apprendimento approfondito II.
KI-basierte generative Anwendungen erstellen: Der Developer Practical Guide ist ein umfassender itfaden, der einen Schritt-für-Schritt-Ansatz für KI-basierte generative Anwendungen mit gängigen Frameworks wie TensorFlow, PyTorch und Keras bietet. Dieses Buch behandelt die Grundlagen des maschinellen rnens und des Deep arning sowie praktische Beispiele und Projekte, die Entwicklern helfen, intelligente Anwendungen zu entwickeln, die aus Daten lernen und Entscheidungen autonom treffen können. Das Buch befasst sich auch mit den ethischen Implikationen der KI-Entwicklung und der Bedeutung verantwortungsbewusster KI-Praktiken. Das Buch beginnt mit einer Einführung in das Konzept der generativen KI und ihre potenziellen Anwendungen in verschiedenen Branchen. Es geht dann tiefer in die Grundlagen des maschinellen rnens und des Deep arning und erklärt die mathematischen Konzepte und Algorithmen, die in diesen Technologien verwendet werden. Im folgenden Abschnitt werden verschiedene Arten generativer Modelle, einschließlich GANs, VAEs und Transformatoren, sowie deren Anwendungsfälle diskutiert. Das Buch behandelt auch die Implementierung dieser Modelle in beliebte Frameworks wie TensorFlow, PyTorch und Keras. Die folgenden Abschnitte konzentrieren sich auf reale Projekte, die die Anwendung generativer KI in verschiedenen Bereichen wie Computer Vision, Natural Language Processing und Sound Processing demonstrieren. Das Buch schließt mit einer Diskussion über ethische Überlegungen zur Entwicklung von KI und die Notwendigkeit verantwortungsbewusster KI-Praktiken. Buchstruktur: I. Einführung in die Definition und Anwendungen generativer KI * Überblick über maschinelles rnen und Deep arning II.
''
Yapay Zeka Destekli Üretken Uygulamalar Oluşturma: Geliştiriciler için Pratik Bir Kılavuz, TensorFlow, PyTorch ve Keras gibi popüler çerçeveleri kullanarak yapay zeka destekli üretken uygulamalar oluşturmak için adım adım bir yaklaşım sağlayan kapsamlı bir kılavuzdur. Bu kitap, makine öğrenimi ve derin öğrenmenin temellerini ve geliştiricilerin verilerden öğrenebilecekleri ve özerk olarak karar verebilecekleri akıllı uygulamalar oluşturmalarına yardımcı olacak vaka çalışmaları ve projeleri kapsamaktadır. Kitap ayrıca AI gelişiminin etik etkilerini ve sorumlu AI uygulamasının önemini ele almaktadır. Kitap, üretici AI kavramının ve çeşitli endüstrilerdeki potansiyel uygulamalarının tanıtımıyla başlıyor. Daha sonra makine öğrenimi ve derin öğrenmenin temellerini inceleyerek, bu teknolojilerde kullanılan matematiksel kavramları ve algoritmaları açıklar. Aşağıdaki bölümde, GAN'lar, VAE'ler ve transformatörler ve bunların kullanım durumları dahil olmak üzere farklı üretken model türleri tartışılmaktadır. Kitap ayrıca bu modellerin TensorFlow, PyTorch ve Keras gibi popüler çerçevelerde uygulanmasını da kapsar. Aşağıdaki bölümler, üretken AI'nın bilgisayar görüşü, doğal dil işleme ve ses işleme gibi çeşitli alanlarda uygulanmasını gösteren gerçek dünya projelerine odaklanmaktadır. Kitap, AI gelişimi ve sorumlu AI uygulamalarına duyulan ihtiyaç için etik hususların tartışılmasıyla sona eriyor. I. Üretken YZ Tanımı ve Uygulamalarına Giriş * Makine Öğrenimi ve Derin Öğrenmeye Genel Bakış II.
創建基於人工智能的生成應用程序:開發人員實用指南是一個全面的指南,它提供了一種逐步的方法,可以使用TensorFlow,PyTorch和Keras等流行框架創建基於人工智能的生成應用程序。本書涵蓋了機器學習和深度學習的基礎知識,以及幫助開發人員創建可以從數據學習和自主決策的智能應用程序的實用示例和項目。該書還探討了AI發展的倫理影響以及負責任的AI實踐的重要性。本書首先介紹了生成AI的概念及其在各個行業的潛在應用。然後,他深入研究機器學習和深度學習的基礎,解釋了這些技術中使用的數學概念和算法。下一節討論了各種類型的生成模型,包括GAN,VAE和變壓器及其用例。該書還涵蓋了在TensorFlow,PyTorch和Keras等流行框架中實現這些模型的實現。以下部分側重於證明生成AI在計算機視覺,自然語言處理和聲音處理等各個領域的應用的真實項目。該書最後討論了AI發展的倫理考慮以及負責任的AI實踐的必要性。本書的結構:一、生成人工智能定義和應用簡介*機器學習和深度學習概述II。

You may also be interested in:

Laravel Up & Running A Framework for Building Modern PHP Apps, 3rd Edition (Final)
Create GUI Applications with Python & Qt5 (PySide2 Edition) The hands-on guide to making apps with Python
Learning Microsoft Power Apps Building Business Applications with Low-Code Technology (Early Release)
Learning Microsoft Power Apps Building Business Applications with Low-Code Technology (Final Release)
Learning Microsoft Power Apps Building Business Applications with Low-Code Technology (Final Release)
Pragmatic Flutter Building Cross-Platform Mobile Apps for Android, iOS, Web & Desktop
Learning Microsoft Power Apps Building Business Applications with Low-Code Technology (Early Release)
Building Hybrid Android Apps with Java and javascript Applying Native Device APIs
Building Virtual Machine Labs A Hands-on Guide 2nd Edition
TypeScript Crash Course A Hands-On Guide to Building Safer and More Reliable Web Applications
TypeScript Crash Course A Hands-On Guide to Building Safer and More Reliable Web Applications
Professional React Native: Expert techniques and solutions for building high-quality, cross-platform, production-ready apps
Hands-on iOS App Development Projects Turn Your Ideas into Actionable, Real-World iOS Apps with Swift, Xcode, UI Kit, Core Data, AWS and OAuth
TypeScript Crash Course: A hands-on guide to building safer and more reliable web applications (English Edition)
Hands-on Smart Contract Development with Hyperledger Fabric V2 Building Enterprise Blockchain Applications (Final)
GoLang for Machine Learning: A Hands-on-Guide to Building Efficient, Smart and Scalable ML Models with Go Programming
GoLang for Machine Learning A Hands-on-Guide to Building Efficient, Smart and Scalable ML Models with Go Programming
Generative Analysis: The Power of Generative AI for Object-Oriented Software Engineering with UML
Optimizing Generative AI Workloads for Sustainability Balancing Performance and Environmental Impact in Generative AI
Optimizing Generative AI Workloads for Sustainability Balancing Performance and Environmental Impact in Generative AI
Realm. Building Modern Swift Apps with Realm Database (2nd Edition)
Building Decentralized Blockchain Applications Learn How to Use Blockchain as the Foundation for Next-Gen Apps
Generative AI and LLMs Natural Language Processing and Generative Adversarial Networks
A Generative Journey to AI Mastering the foundations and frontiers of generative deep learning
Generative AI and LLMs Natural Language Processing and Generative Adversarial Networks
Fullstack Node.js The Complete Guide to Building Production Apps with Node.js
SwiftUI Cookbook: A guide for building beautiful and interactive SwiftUI apps
Building Web Apps with WordPress WordPress as an Application Framework Second Edition
Hands-On Networking with Azure Build large-scale, real-world apps using Azure networking solutions
Generative AI in Practice: 100+ Amazing Ways Generative Artificial Intelligence is Changing Business and Society
Generative AI in Practice 100+ Amazing Ways Generative Artificial Intelligence is Changing Business and Society
Generative Analysis The Power of Generative AI for Object-Oriented Software Engineering with UML (Early Release)
Generative Analysis The Power of Generative AI for Object-Oriented Software Engineering with UML (Early Release)
Generative Artificial Intelligence Exploring the Power and Potential of Generative AI
Generative Artificial Intelligence Exploring the Power and Potential of Generative AI
The No-Code Startup: The complete guide to building apps without code
Building Web Apps with WordPress WordPress as an Application Framework
The No-Code Startup The complete guide to building apps without code
The No-Code Startup The complete guide to building apps without code
Learning HTML5 Game Programming A Hands-on Guide to Building Online Games Using Canvas, SVG, and WebGL