BOOKS - Metaheuristics for Machine Learning Algorithms and Applications
Metaheuristics for Machine Learning Algorithms and Applications - Kanak Kalita, Narayanan Ganesh 2024 PDF | EPUB Wiley-Scrivener BOOKS
ECO~15 kg CO²

1 TON

Views
70890

Telegram
 
Metaheuristics for Machine Learning Algorithms and Applications
Author: Kanak Kalita, Narayanan Ganesh
Year: 2024
Pages: 327
Format: PDF | EPUB
File size: 10.1 MB
Language: ENG



Pay with Telegram STARS
Metaheuristics for Machine Learning Algorithms and Applications: A Comprehensive Guide to Understanding the Evolution of Technology and Its Impact on Human Society Introduction In today's fast-paced world, technology is advancing at an unprecedented rate, transforming every aspect of our lives. From smartphones to self-driving cars, machine learning algorithms have become an integral part of our daily lives. However, the rapid evolution of technology has also brought about new challenges and concerns, such as job displacement, privacy invasion, and social isolation. To navigate these challenges, it is essential to develop a personal paradigm for understanding the technological process of developing modern knowledge. This book provides a comprehensive guide to metaheuristics for machine learning algorithms and their applications, helping readers grasp the underlying principles of technology and its impact on human society. Chapter 1: The Evolution of Technology The chapter begins by exploring the history of technology, from the invention of the wheel to the development of artificial intelligence. It highlights the significant milestones that have shaped the world we live in today, including the Industrial Revolution, the advent of computers, and the rise of the internet.
Метаэвристика для алгоритмов и приложений машинного обучения: всеобъемлющее руководство по пониманию эволюции технологий и ее влияния на человеческое общество Введение В современном быстро развивающемся мире технологии развиваются с беспрецедентной скоростью, трансформируя каждый аспект нашей жизни. От смартфонов до самоуправляемых автомобилей - алгоритмы машинного обучения стали неотъемлемой частью нашей повседневной жизни. Тем не менее, быстрое развитие технологий также вызвало новые проблемы и проблемы, такие как смещение рабочих мест, вторжение в частную жизнь и социальная изоляция. Чтобы ориентироваться в этих вызовах, необходимо выработать личностную парадигму понимания технологического процесса развития современных знаний. Эта книга содержит всеобъемлющее руководство по метаэвристике для алгоритмов машинного обучения и их приложений, помогая читателям понять основные принципы технологии и ее влияние на человеческое общество. Глава 1: Эволюция технологий Глава начинается с изучения истории технологий, от изобретения колеса до развития искусственного интеллекта. Он подчеркивает важные вехи, которые сформировали мир, в котором мы живем сегодня, включая промышленную революцию, появление компьютеров и рост интернета.
Métavristique pour algorithmes et applications d'apprentissage automatique : un guide complet pour comprendre l'évolution de la technologie et son impact sur la société humaine Introduction Dans le monde en évolution rapide d'aujourd'hui, la technologie évolue à une vitesse sans précédent, transformant chaque aspect de notre vie. Des smartphones aux voitures autonomes, les algorithmes d'apprentissage automatique font désormais partie intégrante de notre vie quotidienne. Cependant, le développement rapide de la technologie a également engendré de nouveaux problèmes et défis, tels que le déplacement des emplois, l'invasion de la vie privée et l'exclusion sociale. Pour relever ces défis, il faut élaborer un paradigme personnel de compréhension du processus technologique du développement des connaissances modernes. Ce livre contient un guide complet sur la métavristique pour les algorithmes d'apprentissage automatique et leurs applications, aidant les lecteurs à comprendre les principes fondamentaux de la technologie et son impact sur la société humaine. Chapitre 1 : Évolution des technologies chapitre commence par l'étude de l'histoire des technologies, de l'invention de la roue au développement de l'intelligence artificielle. Il souligne les étapes importantes qui ont façonné le monde dans lequel nous vivons aujourd'hui, y compris la révolution industrielle, l'émergence des ordinateurs et la croissance d'Internet.
Metahevrística para algoritmos y aplicaciones de aprendizaje automático: una guía integral para comprender la evolución de la tecnología y su impacto en la sociedad humana Introducción En el mundo en rápida evolución de hoy, la tecnología evoluciona a una velocidad sin precedentes, transformando cada aspecto de nuestras vidas. Desde teléfonos inteligentes hasta automóviles autogestionados, los algoritmos de aprendizaje automático se han convertido en una parte integral de nuestra vida diaria. n embargo, el rápido desarrollo de la tecnología también ha causado nuevos problemas y desafíos, como el desplazamiento de puestos de trabajo, la invasión de la privacidad y la exclusión social. Para orientarse en estos retos, es necesario desarrollar un paradigma personal de comprensión del proceso tecnológico de desarrollo del conocimiento moderno. Este libro contiene una guía integral sobre metaevrística para algoritmos de aprendizaje automático y sus aplicaciones, ayudando a los lectores a comprender los principios básicos de la tecnología y su impacto en la sociedad humana. Capítulo 1: La evolución de la tecnología capítulo comienza con el estudio de la historia de la tecnología, desde la invención de la rueda hasta el desarrollo de la inteligencia artificial. Destaca los importantes hitos que han dado forma al mundo en el que vivimos hoy, incluyendo la revolución industrial, el surgimiento de las computadoras y el crecimiento de Internet.
Metaevristica per algoritmi e applicazioni di apprendimento automatico: guida completa alla comprensione dell'evoluzione della tecnologia e del suo impatto sulla società umana Introduzione In un mondo in continua evoluzione, la tecnologia si sviluppa ad una velocità senza precedenti, trasformando ogni aspetto della nostra vita. Dagli smartphone alle auto autosufficienti, gli algoritmi di apprendimento automatico sono diventati parte integrante della nostra vita quotidiana. Tuttavia, il rapido sviluppo della tecnologia ha causato anche nuovi problemi e problemi, come lo spostamento dei posti di lavoro, l'invasione della privacy e l'isolamento sociale. Per orientare queste sfide, è necessario sviluppare un paradigma personale per comprendere il processo tecnologico di sviluppo della conoscenza moderna. Questo libro fornisce una guida completa alla metaevristica per gli algoritmi di apprendimento automatico e le loro applicazioni, aiutando i lettori a comprendere i principi fondamentali della tecnologia e il suo impatto sulla società umana. Capitolo 1: Evoluzione della tecnologia Il capitolo inizia con lo studio della storia della tecnologia, dall'invenzione della ruota allo sviluppo dell'intelligenza artificiale. Sottolinea le importanti fasi cardine che hanno creato il mondo in cui viviamo oggi, tra cui la rivoluzione industriale, la nascita dei computer e la crescita di Internet.
Meta-Auristik für Algorithmen und Machine-arning-Anwendungen: Ein umfassender itfaden zum Verständnis der Technologieentwicklung und ihrer Auswirkungen auf die menschliche Gesellschaft Einführung In der heutigen schnelllebigen Welt entwickelt sich die Technologie mit beispielloser Geschwindigkeit und verändert jeden Aspekt unseres bens. Vom Smartphone bis zum selbstfahrenden Auto - Algorithmen für maschinelles rnen sind aus unserem Alltag nicht mehr wegzudenken. Die rasante Entwicklung der Technologie hat jedoch auch neue Probleme und Herausforderungen mit sich gebracht, wie die Verlagerung von Arbeitsplätzen, das Eindringen in die Privatsphäre und die soziale Ausgrenzung. Um diese Herausforderungen zu meistern, ist es notwendig, ein persönliches Paradigma für das Verständnis des technologischen Prozesses der Entwicklung des modernen Wissens zu entwickeln. Dieses Buch enthält einen umfassenden itfaden zur Metaauristik für Algorithmen für maschinelles rnen und ihre Anwendungen und hilft den sern, die Grundprinzipien der Technologie und ihre Auswirkungen auf die menschliche Gesellschaft zu verstehen. Kapitel 1: Die Evolution der Technologie Das Kapitel beginnt mit dem Studium der Geschichte der Technologie, von der Erfindung des Rades bis zur Entwicklung der künstlichen Intelligenz. Er hebt die wichtigen Meilensteine hervor, die die Welt, in der wir heute leben, geprägt haben, darunter die industrielle Revolution, das Aufkommen von Computern und das Wachstum des Internets.
''
Makine Öğrenimi Algoritmaları ve Uygulamaları için Metaheuristics: Teknolojinin Evrimini ve İnsan Toplumu Üzerindeki Etkisini Anlamak İçin Kapsamlı Bir Rehber Giriş Günümüzün hızla gelişen dünyasında, teknoloji benzeri görülmemiş bir oranda gelişiyor ve hayatımızın her yönünü dönüştürüyor. Akıllı telefonlardan kendi kendini süren arabalara, makine öğrenme algoritmaları günlük hayatımızın ayrılmaz bir parçası haline geldi. Bununla birlikte, teknolojinin hızla gelişmesi, iş yerinden etme, mahremiyet işgali ve sosyal izolasyon gibi yeni sorunlara ve zorluklara da neden olmuştur. Bu zorlukların üstesinden gelmek için, modern bilgiyi geliştirmenin teknolojik sürecini anlamak için kişisel bir paradigma geliştirmek gerekir. Bu kitap, makine öğrenimi algoritmaları ve uygulamaları için metaheuristik için kapsamlı bir rehber sunarak, okuyucuların teknolojinin temel ilkelerini ve insan toplumu üzerindeki etkisini anlamalarına yardımcı olur. Bölüm 1: Teknolojinin Evrimi Bölüm, tekerleğin icadından yapay zekanın geliştirilmesine kadar teknoloji tarihinin incelenmesiyle başlar. Endüstri devrimi, bilgisayarların ortaya çıkışı ve İnternet'in büyümesi de dahil olmak üzere bugün yaşadığımız dünyayı şekillendiren önemli kilometre taşlarını vurgulamaktadır.
用於機器學習算法和應用的元信息學:了解技術演變及其對人類社會影響的綜合指南介紹在當今快速發展的世界中,技術以前所未有的速度發展,改變了我們生活的方方面面。從智能手機到自動駕駛汽車-機器學習算法已成為我們日常生活不可或缺的一部分。但是,技術的迅速發展也帶來了新的挑戰和挑戰,例如工作崗位轉移,侵犯隱私和社會排斥。為了應對這些挑戰,必須建立個人範式,以了解現代知識發展的過程過程。這本書為機器學習算法及其應用提供了全面的元信息學指南,幫助讀者了解該技術的基本原理及其對人類社會的影響。第一章:技術的演變第一章從研究技術史開始,從車輪的發明到人工智能的發展。它強調了塑造我們今天生活的世界的重要裏程碑,包括工業革命、計算機的出現和互聯網的興起。

You may also be interested in:

Fundamentals of Machine & Deep Learning A Complete Guide on Python Coding for Machine and Deep Learning with Practical Exercises for Learners (Sachan Book 102)
Machine Learning for Emotion Analysis in Python: Build AI-powered tools for analyzing emotion using natural language processing and machine learning
Python Machine Learning Is The Complete Guide To Everything You Need To Know About Python Machine Learning Keras, Numpy, Scikit Learn, Tensorflow, With Useful Exercises and examples
Python Machine Learning A Hands-On Beginner|s Guide to Effectively Understand Artificial Neural Networks and Machine Learning Using Python
Python Machine Learning Understand Python Libraries (Keras, NumPy, Scikit-lear, TensorFlow) for Implementing Machine Learning Models in Order to Build Intelligent Systems
Ultimate Machine Learning with ML.NET Build, Optimize, and Deploy Powerful Machine Learning Models for Data-Driven Insights with ML.NET, Azure Functions, and Web API
Data Science and Machine Learning Interview Questions Using R Crack the Data Scientist and Machine Learning Engineers Interviews with Ease
Data Science and Machine Learning Interview Questions Using R: Crack the Data Scientist and Machine Learning Engineers Interviews with Ease
Learn OpenCV with Python by Examples: Implement Computer Vision Algorithms Provided by OpenCV with Python for Image Processing, Object Detection and Machine Learning
Ultimate Machine Learning with ML.NET: Build, Optimize, and Deploy Powerful Machine Learning Models for Data-Driven Insights with ML.NET, Azure Functions, and Web API (English Edition)
Python Machine Learning for Beginners Unlocking the Power of Data. A Beginner|s Guide to Machine Learning with Python
Python Machine Learning for Beginners Unlocking the Power of Data. A Beginner|s Guide to Machine Learning with Python
Python Machine Learning for Beginners: Unlocking the Power of Data. A Beginner|s Guide to Machine Learning with Python
Machine Learning Q and AI 30 Essential Questions and Answers on Machine Learning and AI
The Art of Machine Learning A Hands-On Guide to Machine Learning with R
The Art of Machine Learning: A Hands-On Guide to Machine Learning with R
Machine Learning Q and AI 30 Essential Questions and Answers on Machine Learning and AI
Machine Learning Q and AI: 30 Essential Questions and Answers on Machine Learning and AI
The Art of Machine Learning A Hands-On Guide to Machine Learning with R
Learn OpenCV with Python by Examples Implement Computer Vision Algorithms Provided by OpenCV with Python for Image Processing, Object Detection and Machine Learning 2nd Edition
Machine Learning with Rust A practical attempt to explore Rust and its libraries across popular Machine Learning techniques
Practical Automated Machine Learning on Azure Using Azure Machine Learning to Quickly Build AI Solutions, First Edition
Machine Learning with Rust: A practical attempt to explore Rust and its libraries across popular machine learning techniques
Machine Learning with Python Comprehensive Beginner’s Guide to Machine Learning in Python with Exercises and Case Studies
Metaheuristics for Enterprise Data Intelligence (Advances in Metaheuristics)
Machine Learning A Comprehensive, Step-by-Step Guide to Intermediate Concepts and Techniques in Machine Learning
Machine Learning With Python A Comprehensive Beginners Guide to Learn the Realms of Machine Learning with Python
Image Processing and Machine Learning, Volume 2 Advanced Topics in Image Analysis and Machine Learning
Machine Learning for Finance Beginner|s guide to explore machine learning in banking and finance
The Definitive Guide to Machine Learning Operations in AWS Machine Learning Scalability and Optimization with AWS
Google JAX Essentials A quick practical learning of blazing-fast library for Machine Learning and Deep Learning projects
Shallow Learning vs. Deep Learning A Practical Guide for Machine Learning Solutions
Shallow Learning vs. Deep Learning A Practical Guide for Machine Learning Solutions
Ultimate Java for Data Analytics and Machine Learning: Unlock Java|s Ecosystem for Data Analysis and Machine Learning Using WEKA, JavaML, JFreeChart, and Deeplearning4j (English Edition)
Ultimate Machine Learning with Scikit-Learn Unleash the Power of Scikit-Learn and Python to Build Cutting-Edge Predictive Modeling Applications and Unlock Deeper Insights Into Machine Learning
Ultimate Machine Learning with Scikit-Learn Unleash the Power of Scikit-Learn and Python to Build Cutting-Edge Predictive Modeling Applications and Unlock Deeper Insights Into Machine Learning
Ultimate Machine Learning with Scikit-Learn Unleash the Power of Scikit-Learn and Python to Build Cutting-Edge Predictive Modeling Applications and Unlock Deeper Insights Into Machine Learning
Ultimate Java for Data Analytics and Machine Learning Unlock Java|s Ecosystem for Data Analysis and Machine Learning Using WEKA, JavaML, JFreeChart, and Deeplearning4j
Ultimate Java for Data Analytics and Machine Learning Unlock Java|s Ecosystem for Data Analysis and Machine Learning Using WEKA, JavaML, JFreeChart, and Deeplearning4j
Python Machine Learning: Everything You Should Know About Python Machine Learning Including Scikit Learn, Numpy, PyTorch, Keras And Tensorflow With Step-By-Step Examples And PRACTICAL Exercises