BOOKS - Microservices for Machine Learning Design, implement, and manage high-perform...
Microservices for Machine Learning Design, implement, and manage high-performance ML systems with microservices - Rohit Ranjan 2024 PDF | EPUB | MOBI BPB Publications BOOKS
ECO~27 kg CO²

3 TON

Views
35355

Telegram
 
Microservices for Machine Learning Design, implement, and manage high-performance ML systems with microservices
Author: Rohit Ranjan
Year: 2024
Pages: 966
Format: PDF | EPUB | MOBI
File size: 10.1 MB
Language: ENG



Pay with Telegram STARS
Designing and managing high-performance machine learning (ML) systems is a complex task that requires a deep understanding of various technologies and their interplay. The book "Microservices for Machine Learning" provides a comprehensive guide to designing, implementing, and managing such systems using microservices architecture. This approach allows for breaking down the overall system into smaller, independent components, each responsible for a specific task, making it easier to maintain, scale, and evolve over time. The book covers the entire lifecycle of an ML system, from conceptualization to deployment and maintenance, and provides practical advice on how to navigate the rapidly changing landscape of ML technology. It emphasizes the importance of understanding the underlying principles of ML and the need for a personal paradigm for perceiving the technological process of developing modern knowledge as the basis for the survival of humanity and the survival of the unification of people in a warring state. The book is divided into four parts: Part I provides an overview of ML systems and their importance in today's technology landscape, while Part II delves into the details of designing and implementing microservices for ML. Part III discusses the challenges of deploying and maintaining ML systems in production environments, and Part IV offers guidance on how to evolve and adapt to new technologies and trends.
Проектирование и управление высокопроизводительными системами машинного обучения (ML) является сложной задачей, требующей глубокого понимания различных технологий и их взаимодействия. Книга «Микросервисы для машинного обучения» содержит исчерпывающее руководство по проектированию, внедрению и управлению такими системами с использованием архитектуры микросервисов. Такой подход позволяет разбивать всю систему на более мелкие, независимые компоненты, каждый из которых отвечает за конкретную задачу, что облегчает ее обслуживание, масштабирование и развитие с течением времени. Книга охватывает весь жизненный цикл ML-системы, от концептуализации до развертывания и обслуживания, и содержит практические советы о том, как ориентироваться в быстро меняющейся среде ML-технологии. В ней подчеркивается важность понимания основополагающих принципов МИ и необходимость личностной парадигмы восприятия технологического процесса развития современного знания как основы выживания человечества и выживания объединения людей в воюющем государстве. Книга разделена на четыре части: в части I представлен обзор ML-систем и их важности в современном технологическом ландшафте, а в части II - подробности проектирования и внедрения микросервисов для ML. В части III обсуждаются проблемы развертывания и обслуживания ML-систем в производственных средах, а в части IV предлагаются рекомендации по развитию и адаптации к новым технологиям и тенденциям.
Concevoir et gérer des systèmes d'apprentissage automatique à haute performance (ML) est un défi qui nécessite une compréhension approfondie des différentes technologies et de leur interaction. livre Microservices for Machine arning fournit un guide complet sur la conception, la mise en œuvre et la gestion de ces systèmes à l'aide de l'architecture microservices. Cette approche permet de décomposer l'ensemble du système en composants plus petits et indépendants, chacun étant responsable d'une tâche spécifique, ce qui facilite sa maintenance, sa mise à l'échelle et son développement au fil du temps. livre couvre tout le cycle de vie du système ML, de la conceptualisation au déploiement et à la maintenance, et fournit des conseils pratiques sur la façon de naviguer dans un environnement de technologie ML en évolution rapide. Il souligne l'importance de comprendre les principes fondamentaux du MI et la nécessité d'un paradigme personnel pour percevoir le processus technologique du développement des connaissances modernes comme base de la survie de l'humanité et de la survie de l'unification des gens dans un État en guerre. livre est divisé en quatre parties : la partie I donne un aperçu des systèmes ML et de leur importance dans le paysage technologique actuel, et la partie II donne des détails sur la conception et la mise en œuvre des microservices pour ML. La partie III traite des problèmes de déploiement et de maintenance des systèmes ML dans les environnements de production, tandis que la partie IV propose des recommandations pour le développement et l'adaptation aux nouvelles technologies et tendances.
Diseñar y administrar sistemas de aprendizaje automático de alto rendimiento (ML) es una tarea compleja que requiere una comprensión profunda de las diferentes tecnologías y su interacción. libro Microservicios para el Aprendizaje Automático proporciona una guía exhaustiva para diseñar, implementar y administrar dichos sistemas utilizando la arquitectura de microservicios. Este enfoque permite dividir todo el sistema en componentes más pequeños e independientes, cada uno de los cuales es responsable de una tarea específica, lo que facilita su mantenimiento, ampliación y desarrollo a lo largo del tiempo. libro cubre todo el ciclo de vida del sistema ML, desde la conceptualización hasta la implementación y el mantenimiento, y ofrece consejos prácticos sobre cómo navegar por un entorno de tecnología ML que cambia rápidamente. Destaca la importancia de comprender los principios fundamentales del MI y la necesidad de un paradigma personal para percibir el proceso tecnológico del desarrollo del conocimiento moderno como base para la supervivencia de la humanidad y la supervivencia de la unión de las personas en un Estado en guerra. libro se divide en cuatro partes: la parte I presenta una visión general de los sistemas ML y su importancia en el panorama tecnológico actual, y la parte II presenta detalles del diseño e implementación de microservicios para ML. En la parte III se examinan los problemas de despliegue y mantenimiento de los sistemas ML en los entornos de producción, y en la parte IV se ofrecen recomendaciones para el desarrollo y la adaptación a las nuevas tecnologías y tendencias.
Progettare e gestire sistemi di apprendimento automatico ad alte prestazioni (ML) è una sfida che richiede una profonda comprensione e interazione delle diverse tecnologie. Il libro Microservizi per l'apprendimento automatico fornisce una guida completa alla progettazione, all'implementazione e alla gestione di tali sistemi utilizzando l'architettura dei microservizi. Questo approccio consente di dividere l'intero sistema in componenti più piccoli e indipendenti, ognuno dei quali è responsabile di una sfida specifica, in modo da facilitarne la manutenzione, la scalabilità e lo sviluppo nel tempo. Il libro comprende l'intero ciclo di vita del sistema ML, dalla concettualizzazione all'installazione e alla manutenzione, e fornisce suggerimenti pratici su come orientarsi in un ambiente ML in rapida evoluzione. Sottolinea l'importanza della comprensione dei principi fondamentali dell'MII e la necessità di un paradigma personale per la percezione del processo tecnologico di sviluppo della conoscenza moderna come base della sopravvivenza dell'umanità e della sopravvivenza dell'unione delle persone in uno stato in guerra. Il libro è suddiviso in quattro parti: la parte I fornisce una panoramica dei sistemi ML e della loro importanza nel panorama tecnologico moderno e la parte II fornisce i dettagli della progettazione e dell'implementazione dei microservizi per ML. La parte III affronta i problemi legati all'installazione e alla manutenzione dei sistemi ML negli ambienti di produzione, mentre la parte IV offre suggerimenti per lo sviluppo e l'adattamento alle nuove tecnologie e alle nuove tendenze.
Der Entwurf und die Verwaltung von Hochleistungssystemen für maschinelles rnen (ML) ist eine komplexe Aufgabe, die ein tiefes Verständnis der verschiedenen Technologien und ihrer Wechselwirkungen erfordert. Das Buch Microservices for Machine arning bietet eine umfassende Anleitung zum Entwurf, zur Implementierung und zum Management solcher Systeme mithilfe der Microservices-Architektur. Dieser Ansatz ermöglicht es, das gesamte System in kleinere, unabhängige Komponenten zu zerlegen, von denen jede für eine bestimmte Aufgabe verantwortlich ist, was die Wartung, Skalierung und Entwicklung im Laufe der Zeit erleichtert. Das Buch deckt den gesamten benszyklus eines ML-Systems von der Konzeption über die Bereitstellung bis hin zur Wartung ab und enthält praktische Tipps zur Navigation in der sich schnell verändernden ML-Technologie-Umgebung. Es betont die Bedeutung des Verständnisses der grundlegenden Prinzipien des MI und die Notwendigkeit eines persönlichen Paradigmas der Wahrnehmung des technologischen Prozesses der Entwicklung des modernen Wissens als Grundlage für das Überleben der Menschheit und das Überleben der Vereinigung der Menschen in einem kriegführenden Staat. Das Buch ist in vier Teile gegliedert: Teil I gibt einen Überblick über ML-Systeme und ihre Bedeutung in der heutigen Technologielandschaft und Teil II über die Details der Konzeption und Implementierung von Microservices für ML. In Teil III werden die Herausforderungen bei der Bereitstellung und Wartung von ML-Systemen in Produktionsumgebungen diskutiert und in Teil IV Empfehlungen zur Entwicklung und Anpassung an neue Technologien und Trends gegeben.
עיצוב וניהול מערכות למידת מכונה (ML) היא משימה מורכבת המצריכה הבנה עמוקה של טכנולוגיות שונות ואינטראקציה ביניהן. Microservices for Machine arning מספק מדריך מקיף לתכנון, יישום וניהול של מערכות אלו באמצעות ארכיטקטורת המיקרו-רווייס. גישה זו מאפשרת לך לפרק את כל המערכת לרכיבים קטנים ועצמאיים, שכל אחד מהם אחראי למשימה מסוימת, אשר מקלה על התחזוקה, הדירוג והפיתוח שלה לאורך זמן. הספר מכסה את כל מחזור החיים של מערכת ML, החל מתפיסה ועד פריסה ותחזוקה, ומספק עצות מעשיות כיצד לנווט את הסביבה המשתנה במהירות של טכנולוגיית ML. הוא מדגיש את החשיבות של הבנת עקרונות היסוד של MI והצורך בפרדיגמה אישית לתפיסה של התהליך הטכנולוגי של התפתחות הידע המודרני כבסיס להישרדות האנושות ולהישרדות של איחוד אנשים במצב לוחמני. הספר מחולק לארבעה חלקים: חלק I מספק סקירה של מערכות ML וחשיבותן בנוף הטכנולוגי המודרני, וחלק II מספק פרטים על תכנון ויישום של מיקרו-רווחים עבור ML. חלק III דן באתגרים של פריסה ותחזוקה של מערכות ML בסביבות הייצור, וחלק IV מספק הדרכה כיצד להתפתח ולהתאים את עצמו לטכנולוגיות ומגמות חדשות.''
Yüksek performanslı makine öğrenimi (ML) sistemlerinin tasarlanması ve yönetilmesi, çeşitli teknolojilerin ve etkileşimlerinin derinlemesine anlaşılmasını gerektiren karmaşık bir görevdir. Makine Öğrenimi için Mikro Hizmetler, mikro hizmet mimarisini kullanarak bu tür sistemlerin tasarımı, uygulanması ve yönetimi için kapsamlı bir rehber sağlar. Bu yaklaşım, tüm sistemi, her biri belirli bir görevden sorumlu olan ve zaman içinde bakımını, ölçeklendirilmesini ve geliştirilmesini kolaylaştıran daha küçük, bağımsız bileşenlere ayırmanıza olanak tanır. Kitap, kavramsallaştırmadan dağıtım ve bakıma kadar bir ML sisteminin tüm yaşam döngüsünü kapsar ve hızla değişen ML teknolojisinin ortamında nasıl gezinileceğine dair pratik ipuçları sağlar. MI'nin temel ilkelerini anlamanın önemini ve modern bilginin gelişiminin teknolojik sürecinin algılanması için kişisel bir paradigmaya duyulan ihtiyacı, insanlığın hayatta kalması ve savaşan bir devlette insanların birleşmesinin hayatta kalması için temel olarak vurgulamaktadır. Kitap dört bölüme ayrılmıştır: Bölüm I, ML sistemlerine ve modern teknolojik manzaradaki önemine genel bir bakış sunar ve Bölüm II, ML için mikro hizmetlerin tasarım ve uygulamasının ayrıntılarını sağlar. Bölüm III, ML sistemlerinin üretim ortamlarında dağıtılması ve sürdürülmesinin zorluklarını tartışır ve Bölüm IV, yeni teknolojilerin ve trendlerin nasıl geliştirileceği ve uyarlanacağı konusunda rehberlik sağlar.
تصميم وإدارة أنظمة التعلم الآلي عالية الأداء (ML) مهمة معقدة تتطلب فهمًا عميقًا لمختلف التقنيات وتفاعلها. توفر Microservices للتعلم الآلي دليلًا شاملاً لتصميم وتنفيذ وإدارة هذه الأنظمة باستخدام بنية الخدمة الدقيقة. يسمح لك هذا النهج بتقسيم النظام بأكمله إلى مكونات أصغر ومستقلة، كل منها مسؤول عن مهمة محددة، مما يسهل صيانته وتوسيعه وتطويره بمرور الوقت. يغطي الكتاب دورة الحياة الكاملة لنظام ML، من التصور إلى النشر والصيانة، ويقدم نصائح عملية حول كيفية التنقل في البيئة سريعة التغير لتكنولوجيا ML. ويشدد على أهمية فهم المبادئ الأساسية للمعلومات الإدارية والحاجة إلى نموذج شخصي لتصور العملية التكنولوجية لتطور المعرفة الحديثة كأساس لبقاء البشرية وبقاء توحيد الشعوب في دولة متحاربة. ينقسم الكتاب إلى أربعة أجزاء: يقدم الجزء الأول لمحة عامة عن أنظمة ML وأهميتها في المشهد التكنولوجي الحديث، ويقدم الجزء الثاني تفاصيل تصميم وتنفيذ الخدمات الدقيقة لـ ML. ويناقش الجزء الثالث تحديات نشر نظم مكافحة غسل الأموال والحفاظ عليها في بيئات الإنتاج، ويقدم الجزء الرابع إرشادات بشأن كيفية التطور والتكيف مع التكنولوجيات والاتجاهات الجديدة.
高性能機器學習(ML)系統的設計和管理是一項艱巨的任務,需要深入了解各種技術及其相互作用。「用於機器學習的微服務」一書提供了有關使用微服務體系結構設計,實施和管理此類系統的詳盡指南。這種方法允許將整個系統分解為更小,更獨立的組件,每個組件負責特定任務,從而使其隨著時間的推移易於維護,擴展和發展。該書涵蓋了ML系統的整個生命周期,從概念化到部署和維護,並提供了有關如何導航快速變化的ML技術環境的實用建議。它強調了解新聞部基本原則的重要性,並強調有必要以個人範式來理解現代知識的發展過程作為人類生存和人類在交戰國團結生存的基礎。該書分為四個部分:第一部分概述了ML系統及其在現代技術景觀中的重要性,第二部分詳細介紹了ML微服務的設計和實施。第三部分討論了在生產環境中部署和維護ML系統的問題,第四部分提出了開發和適應新技術和趨勢的建議。

You may also be interested in:

Learning TensorFlow.js Powerful Machine Learning in javascript
Federated Learning (Synthesis Lectures on Artificial Intelligence and Machine Learning)
Disease Prediction using Machine Learning, Deep Learning and Data Analytics
Disease Prediction using Machine Learning, Deep Learning and Data Analytics
Building Intelligent Systems Using Machine Learning and Deep Learning Security, Applications and Its Challenges
Risk Modeling Practical Applications of Artificial Intelligence, Machine Learning, and Deep Learning
Building Intelligent Systems Using Machine Learning and Deep Learning Security, Applications and Its Challenges
Machine Learning with Python A Comprehensive Guide To Algorithms, Deep Learning Techniques, And Practical Applications
Hands-On Unsupervised Learning Using Python: How to Build Applied Machine Learning Solutions from Unlabeled Data
Elements of Causal Inference: Foundations and Learning Algorithms (Adaptive Computation and Machine Learning series)
Adversarial Machine Learning: Attack Surfaces, Defence Mechanisms, Learning Theories in Artificial Intelligence
Machine Learning: Master Supervised and Unsupervised Learning Algorithms with Real Examples (English Edition)
Machine Learning and Deep Learning in Natural Language Processing
Machine Learning and Deep Learning in Real-Time Applications
Machine Learning and Deep Learning in Neuroimaging Data Analysis
Machine Learning and Deep Learning in Neuroimaging Data Analysis
Machine Learning - A Journey To Deep Learning With Exercises And Answers
Statistical Reinforcement Learning Modern Machine Learning Approaches
Distributional Reinforcement Learning (Adaptive Computation and Machine Learning)
Machine Learning and Deep Learning in Natural Language Processing
Python Machine Learning for Beginners Learning from Scratch Numpy, Pandas, Matplotlib, Seaborn, SKlearn and TensorFlow 2.0
Generative AI with Python Harnessing The Power Of Machine Learning And Deep Learning To Build Creative And Intelligent Systems
Default Loan Prediction Based On Customer Behavior Using Machine Learning And Deep Learning With Python, Second Edition
Machine Learning with Python Cookbook Practical Solutions from Preprocessing to Deep Learning, 2nd Edition (Final Release)
Data Scientist Pocket Guide Over 600 Concepts, Terminologies, and Processes of Machine Learning and Deep Learning Assembled
Machine Learning. Supervised Learning Techniques and Tools Nonlinear Models Exercises with R, SAS, STATA, EVIEWS and SPSS
Learning Genetic Algorithms with Python Empower the Performance of Machine Learning and AI Models with the Capabilities of a Powerful Search Algorithm
Machine Learning with Python Cookbook Practical Solutions from Preprocessing to Deep Learning, 2nd Edition (Final Release)
Programming Machine Learning From Coding to Deep Learning
Machine Learning in Elixir Learning to Learn with Nx and Axon
Machine Learning in Elixir Learning to Learn with Nx and Axon
Implementing Azure Cloud Design Patterns: Implement efficient design patterns for data management, high availability, monitoring and other popular patterns on your Azure Cloud
Machine Learning: Fundamental Algorithms for Supervised and Unsupervised Learning With Real-World Applications (Advanced Data Analytics Book 1)
Data Science Crash Course Thyroid Disease Classification and Prediction Using Machine Learning and Deep Learning with Python GUI, Second Edition
Programming-Based Formal Languages and Automata Theory: Design, Implement, Validate, and Prove (Texts in Computer Science)
Service-Oriented Architecture Analysis and Design for Services and Microservices, 2nd Edition
Principles of Web API Design Delivering Value with APIs and Microservices (Final Release)
Machine Learning for Materials Discovery: Numerical Recipes and Practical Applications (Machine Intelligence for Materials Science)
Ultimate Microservices with Go Combine the Power of Microservices with Go to Build Highly Scalable, Maintainable, and Efficient Systems
Ultimate Microservices with Go Combine the Power of Microservices with Go to Build Highly Scalable, Maintainable, and Efficient Systems