BOOKS - A Practical Guide to Data Analysis Using R An Example-Based Approach
A Practical Guide to Data Analysis Using R An Example-Based Approach - John H. Maindonald, W. John Braun, Jeffrey L. Andrews 2024 PDF Cambridge University Press BOOKS
ECO~19 kg CO²

2 TON

Views
90342

Telegram
 
A Practical Guide to Data Analysis Using R An Example-Based Approach
Author: John H. Maindonald, W. John Braun, Jeffrey L. Andrews
Year: 2024
Pages: 551
Format: PDF
File size: 15.9 MB
Language: ENG



Pay with Telegram STARS
A Practical Guide to Data Analysis Using R An ExampleBased Approach In today's fast-paced world, data analysis has become an essential tool for making informed decisions in various fields such as business, healthcare, finance, and social sciences. With the increasing amount of data being generated every day, it is crucial to have a practical guide to help us navigate through this vast ocean of information. This book, "A Practical Guide to Data Analysis Using R An ExampleBased Approach," provides a comprehensive and hands-on approach to understanding the process of data analysis using R programming language. The book focuses on the development of a personal paradigm for perceiving the technological process of developing modern knowledge as the basis for the survival of humanity and the survival of the unification of people in a warring state. The book begins by introducing the concept of technology evolution and its impact on society. It highlights the need to study and understand the process of technology evolution to stay relevant in the ever-changing world. The author emphasizes the importance of developing a personal paradigm for perceiving the technological process of developing modern knowledge as the basis for the survival of humanity and the survival of the unification of people in a warring state. This personal paradigm will enable readers to adapt to new technologies and make informed decisions in their respective fields. The book then delves into the basics of R programming language and its applications in data analysis. It covers topics such as data cleaning, visualization, statistical modeling, and machine learning.
Практическое руководство по анализу данных с использованием R. Пример подхода В современном быстро развивающемся мире анализ данных стал важным инструментом для принятия обоснованных решений в различных областях, таких как бизнес, здравоохранение, финансы и социальные науки. С каждым днем все больше данных генерируется, поэтому крайне важно иметь практическое руководство, которое поможет нам ориентироваться в этом огромном океане информации. В этой книге «Практическое руководство по анализу данных с использованием R. Пример подхода» представлен комплексный и практический подход к пониманию процесса анализа данных с использованием языка программирования R. В центре внимания книги - развитие личностной парадигмы восприятия технологического процесса развития современного знания как основы выживания человечества и выживания объединения людей в воюющем государстве. Книга начинается с введения концепции эволюции технологий и её влияния на общество. Он подчеркивает необходимость изучения и понимания процесса эволюции технологий, чтобы оставаться актуальным в постоянно меняющемся мире. Автор подчеркивает важность выработки личностной парадигмы восприятия технологического процесса развития современного знания как основы выживания человечества и выживания объединения людей в воюющем государстве. Эта личная парадигма позволит читателям адаптироваться к новым технологиям и принимать обоснованные решения в соответствующих областях. Затем книга углубляется в основы языка программирования R и его применения в анализе данных. Он охватывает такие темы, как очистка данных, визуализация, статистическое моделирование и машинное обучение.
''

You may also be interested in:

Learn Data Science Fundamentals A Beginner|s Guide To Data Science Programs, Analysis And Visualization
PYTHON DATA ANALYTICS: Mastering Python for Effective Data Analysis and Visualization (2024 Beginner Guide)
SQL for Data Analysis A Middle-Level Guide to Integrating SQL with Data Science Tools
SQL for Data Analysis: A Middle-Level Guide to Integrating SQL with Data Science Tools
SQL for Data Analysis A Middle-Level Guide to Integrating SQL with Data Science Tools
Machine Learning for Civil and Environmental Engineers: A Practical Approach to Data-Driven Analysis, Explainability, and Causality
Machine Learning for Civil and Environmental Engineers A Practical Approach to Data-driven Analysis, Explainability, and Causality
Python For Data Analysis A Beginner|s Guide to Wrangling and Analyzing Data Using Python
Ultimate Python Libraries for Data Analysis and Visualization: Leverage Pandas, NumPy, Matplotlib, Seaborn, Julius AI and No-Code Tools for Data Acquisition, … and Statistical Analysis (English
Graph Data Modeling in Python: A practical guide to curating, analyzing, and modeling data with graphs
Guide to Advanced Statistical Analysis in R Advanced data analysis – without tears
Guide to Advanced Statistical Analysis in R Advanced data analysis – without tears
Advanced Data Analytics with AWS Explore Data Analysis Concepts in the Cloud to Gain Meaningful Insights and Build Robust Data Engineering Workflows Across Diverse Data Sources
Advanced Data Analytics with AWS Explore Data Analysis Concepts in the Cloud to Gain Meaningful Insights and Build Robust Data Engineering Workflows Across Diverse Data Sources
Thematic Analysis: A Practical Guide
Advanced Data Analytics with AWS: Explore Data Analysis Concepts in the Cloud to Gain Meaningful Insights and Build Robust Data Engineering Workflows Across Diverse Data Sources (English Edition)
Python Data Science A Step-By-Step Guide to Data Analysis
Ultimate Python Libraries for Data Analysis and Visualization Leverage Pandas, NumPy, Matplotlib, Seaborn, Julius AI and No-Code Tools for Data Acquisition, Visualization, and Statistical Analysis
Uncertainty Analysis for Engineers and Scientists A Practical Guide
Python Programming 2 Books in 1 Python for Data Analysis and Science with Big Data Analysis, Statistics and Machine Learning
Python for Data Science A step-by-step Python Programming Guide to Master Big Data, Analysis, Machine Learning, and Artificial Intelligence
Python Data Science The Bible. The Ultimate Beginner’s Guide to Learn Data Analysis, from the Basics and Essentials, to Advance Content! (Python Programming, Python Crash Course, Coding Made Easy Book
A Beginner|s Guide to Python for Data Analysis
A Beginner|s Guide to Python for Data Analysis
A Beginner|s Guide to Python for Data Analysis
Text Data Management and Analysis A Practical Introduction to Information Retrieval and Text Mining
Practical Reliability Data Analysis for Non-reliability Engineers (Technology Management and Professional Development)
Analysis of Clinical Trials Using SAS A Practical Guide, Second Edition
Managing Data Quality: A practical guide
Natural Hazard Data: A Practical Guide
R for Political Data Science A Practical Guide
Python for Data Analysis A Complete Crash Course on Python for Data Science to Learn Essential Tools and Python Libraries, NumPy, Pandas, Jupyter Notebook, Analysis and Visualization
Bayesian Analysis with Python - Third Edition: A practical guide to probabilistic modeling
Python in Power BI Unleash the Power of Python for Dynamic Data Analysis A Comprehensive Guide to Data Visualization
Python in Power BI Unleash the Power of Python for Dynamic Data Analysis A Comprehensive Guide to Data Visualization
Big Data Analytics A Practical Guide for Managers
Intelligent Data Analysis From Data Gathering to Data Comprehension (The Wiley Series in Intelligent Signal and Data Processing)
R-ticulate A Beginner|s Guide to Data Analysis for Natural Scientists
R-ticulate: A Beginner|s Guide to Data Analysis for Natural Scientists
R-ticulate A Beginner|s Guide to Data Analysis for Natural Scientists