BOOKS - Artificial Intelligence and Machine Learning in Drug Design and Development
Artificial Intelligence and Machine Learning in Drug Design and Development - Abhirup Khanna, May El Barachi, Sapna Jain, Manoj Kumar 2024 PDF Wiley-Scrivener BOOKS
ECO~23 kg CO²

2 TON

Views
84839

Telegram
 
Artificial Intelligence and Machine Learning in Drug Design and Development
Author: Abhirup Khanna, May El Barachi, Sapna Jain, Manoj Kumar
Year: 2024
Pages: 670
Format: PDF
File size: 88.5 MB
Language: ENG



Pay with Telegram STARS
Book Description: Artificial Intelligence (AI) and Machine Learning (ML) have revolutionized drug design and development, enabling the creation of more effective and efficient medicines. This book provides an overview of AI/ML applications in drug discovery, from early-stage target identification to clinical trial optimization. It covers various techniques, such as deep learning, reinforcement learning, and transfer learning, and their applications in different therapeutic areas. The authors discuss the challenges and limitations of these methods and provide insights into future developments in this rapidly evolving field. Long Description: The book "Artificial Intelligence and Machine Learning in Drug Design and Development" delves into the current state of AI/ML technology in drug discovery and development, highlighting its potential to transform the industry. The authors explore how AI/ML can improve drug design and development, from identifying promising targets to optimizing clinical trials. They discuss the challenges and limitations of these methods, providing a comprehensive understanding of the current state of AI/ML in drug discovery and development.
Искусственный интеллект (ИИ) и машинное обучение (ML) произвели революцию в разработке и разработке лекарств, что позволило создать более эффективные и действенные лекарства. В этой книге представлен обзор приложений AI/ML для обнаружения лекарств, от ранней стадии идентификации целей до оптимизации клинических испытаний. Он охватывает различные методы, такие как глубокое обучение, обучение с подкреплением и обучение с переносом, а также их применение в различных терапевтических областях. Авторы обсуждают проблемы и ограничения этих методов и дают представление о будущих разработках в этой быстро развивающейся области. Подробное описание: Книга «Искусственный интеллект и машинное обучение в разработке и разработке лекарств» углубляется в текущее состояние технологии AI/ML в области открытия и разработки лекарств, подчеркивая ее потенциал для преобразования отрасли. Авторы исследуют, как AI/ML может улучшить дизайн и разработку лекарств, от определения перспективных целей до оптимизации клинических испытаний. Они обсуждают проблемы и ограничения этих методов, обеспечивая всестороннее понимание текущего состояния AI/ML в открытии и разработке лекарств.
L'intelligence artificielle (IA) et l'apprentissage automatique (ML) ont révolutionné le développement et la mise au point de médicaments, ce qui a permis de créer des médicaments plus efficaces et efficients. Ce livre donne un aperçu des applications de l'AI/ML pour la détection de médicaments, depuis le stade précoce de l'identification des cibles jusqu'à l'optimisation des essais cliniques. Il couvre diverses méthodes telles que l'apprentissage en profondeur, l'apprentissage avec des renforts et l'apprentissage avec des transferts, ainsi que leur application dans différents domaines thérapeutiques. s auteurs discutent des défis et des limites de ces méthodes et donnent un aperçu des développements futurs dans ce domaine en évolution rapide. Description détaillée : livre « Intelligence artificielle et apprentissage automatique dans le développement et la mise au point de médicaments » se penche sur l'état actuel de la technologie AI/ML dans le domaine de la découverte et du développement de médicaments, soulignant son potentiel de transformation de l'industrie. s auteurs étudient comment l'AI/ML peut améliorer la conception et le développement des médicaments, depuis la définition d'objectifs prometteurs jusqu'à l'optimisation des essais cliniques. Ils discutent des défis et des limites de ces méthodes, assurant une compréhension complète de l'état actuel de l'AI/ML dans la découverte et le développement de médicaments.
La inteligencia artificial (IA) y el aprendizaje automático (ML) revolucionaron el desarrollo y desarrollo de medicamentos, lo que permitió la creación de medicamentos más eficaces y eficientes. Este libro ofrece una visión general de las aplicaciones de IA/ML para la detección de fármacos, desde la fase inicial de identificación de objetivos hasta la optimización de ensayos clínicos. Abarca diversas técnicas como el aprendizaje profundo, el aprendizaje con refuerzo y el aprendizaje con transferencia, así como su aplicación en diferentes campos terapéuticos. autores discuten los problemas y limitaciones de estas técnicas y dan una idea de los desarrollos futuros en este campo en rápida evolución. Descripción detallada: libro «Inteligencia Artificial y Aprendizaje Automático en el Desarrollo y Desarrollo de Medicamentos» profundiza en el estado actual de la tecnología AI/ML en el campo del descubrimiento y desarrollo de medicamentos, destacando su potencial para transformar la industria. autores investigan cómo la IA/ML puede mejorar el diseño y desarrollo de fármacos, desde la definición de objetivos prometedores hasta la optimización de ensayos clínicos. Discuten los problemas y limitaciones de estas técnicas, proporcionando una comprensión integral del estado actual de IA/ML en el descubrimiento y desarrollo de medicamentos.
Intelligenza artificiale (IA) e apprendimento automatico (ML) hanno rivoluzionato lo sviluppo e lo sviluppo di farmaci, creando farmaci più efficaci ed efficienti. Questo libro fornisce una panoramica delle applicazioni AI/ML per la rilevazione dei farmaci, dall'identificazione precoce degli obiettivi all'ottimizzazione dei test clinici. Esso comprende vari metodi, come l'apprendimento profondo, l'apprendimento con rinforzi e l'apprendimento con trasferimento, e il loro utilizzo in diversi ambiti terapeutici. Gli autori discutono i problemi e le limitazioni di questi metodi e danno un'idea degli sviluppi futuri in questo campo in rapida evoluzione. Descrizione dettagliata: Il libro «Intelligenza artificiale e apprendimento automatico nello sviluppo e nello sviluppo dei farmaci» approfondisce lo stato attuale della tecnologia AI/ML per la scoperta e lo sviluppo dei farmaci, sottolineando il suo potenziale di trasformazione del settore. Gli autori stanno indagando su come AI/ML può migliorare il design e lo sviluppo di farmaci, dalla definizione di obiettivi promettenti all'ottimizzazione dei test clinici. Discutono i problemi e le limitazioni di questi metodi, fornendo una piena comprensione dello stato attuale AI/ML nella scoperta e nello sviluppo dei farmaci.
Künstliche Intelligenz (KI) und maschinelles rnen (ML) haben die Entwicklung und Entwicklung von Medikamenten revolutioniert und damit wirksamere und effektivere Medikamente ermöglicht. Dieses Buch bietet einen Überblick über AI/ML-Anwendungen für die Wirkstoffdetektion, von der frühzeitigen Identifizierung von Zielen bis zur Optimierung klinischer Studien. Es umfasst verschiedene Methoden wie Deep arning, Verstärkungs- und Transfertraining sowie deren Anwendung in verschiedenen therapeutischen Bereichen. Die Autoren diskutieren die Herausforderungen und Grenzen dieser Methoden und geben Einblicke in zukünftige Entwicklungen in diesem sich schnell entwickelnden Bereich. Ausführliche Beschreibung: Das Buch „Künstliche Intelligenz und maschinelles rnen in der Arzneimittelentwicklung und -entwicklung“ befasst sich mit dem aktuellen Stand der KI/ML-Technologie in der Arzneimittelforschung und -entwicklung und unterstreicht ihr Potenzial, die Branche zu verändern. Die Autoren untersuchen, wie AI/ML das Design und die Entwicklung von Medikamenten verbessern kann, von der Identifizierung vielversprechender Ziele bis zur Optimierung klinischer Studien. e diskutieren die Herausforderungen und Grenzen dieser Methoden und bieten einen umfassenden Einblick in den aktuellen Stand der KI/ML in der Wirkstoffentdeckung und -entwicklung.
אינטליגנציה מלאכותית (AI) ו-Machine arning (ML) חוללו מהפכה בתכנון ופיתוח תרופות, מה שאיפשר יצירת תרופות יעילות ויעילות יותר. ספר זה מספק סקירה של יישומי AI/ML לגילוי תרופות, החל בזיהוי מטרות בשלב מוקדם וכלה באופטימיזציה של ניסוי קליני. הוא מכסה טכניקות שונות כגון למידה עמוקה, לימוד חיזוק ולימוד העברה, ויישומם בתחומים טיפוליים שונים. המחברים דנים באתגרים ובמגבלות של שיטות אלה ומספקים תובנות לגבי התפתחויות עתידיות בתחום זה המתפתח במהירות. תיאור מפורט: הספר ”בינה מלאכותית ולמידה של מכונה בפיתוח ופיתוח תרופות” מתעמק במצבה הנוכחי של טכנולוגיית AI/ML בגילוי ופיתוח תרופות, ומדגיש את הפוטנציאל שלה לשנות את התעשייה. המחברים בוחנים כיצד AI/ML יכול לשפר את תכנון ופיתוח התרופה, החל בזיהוי מטרות מבטיחות וכלה בייעול ניסויים קליניים. הם דנים באתגרים ובמגבלות של שיטות אלה, ומספקים הבנה מקיפה של המצב הנוכחי של AI/ML בגילוי ופיתוח תרופות.''
Yapay Zeka (AI) ve Makine Öğrenimi (ML), ilaç tasarımı ve geliştirilmesinde devrim yarattı ve daha etkili ve verimli ilaçların oluşturulmasını sağladı. Bu kitap, erken evre hedef belirlemeden klinik araştırma optimizasyonuna kadar ilaç keşfi için AI/ML uygulamalarına genel bir bakış sunmaktadır. Derin öğrenme, pekiştirmeli öğrenme ve aktarmalı öğrenme gibi çeşitli teknikleri ve bunların çeşitli terapötik alanlardaki uygulamalarını kapsar. Yazarlar, bu yöntemlerin zorluklarını ve sınırlamalarını tartışmakta ve bu hızla gelişen alanda gelecekteki gelişmelere dair fikir vermektedir. Ayrıntılı Açıklama: "İlaç Geliştirme ve Geliştirmede Yapay Zeka ve Makine Öğrenimi" kitabı, ilaç keşfi ve geliştirilmesinde AI/ML teknolojisinin mevcut durumunu inceleyerek endüstriyi dönüştürme potansiyelini vurgulamaktadır. Yazarlar, AI/ML'nin umut verici hedefleri belirlemekten klinik denemeleri optimize etmeye kadar ilaç tasarımını ve geliştirmesini nasıl geliştirebileceğini araştırıyor. Bu yöntemlerin zorluklarını ve sınırlamalarını tartışarak, ilaç keşfi ve geliştirilmesinde AI/ML'nin mevcut durumunun kapsamlı bir şekilde anlaşılmasını sağlar.
أحدث الذكاء الاصطناعي (AI) والتعلم الآلي (ML) ثورة في تصميم الأدوية وتطويرها، مما أتاح إنشاء عقاقير أكثر فعالية وكفاءة. يقدم هذا الكتاب لمحة عامة عن تطبيقات الذكاء الاصطناعي/ML لاكتشاف الأدوية، من تحديد الهدف في المرحلة المبكرة إلى تحسين التجارب السريرية. وهو يغطي تقنيات مختلفة مثل التعلم العميق والتعلم المعزز والتعلم النقلي، بالإضافة إلى تطبيقها في مجالات علاجية مختلفة. يناقش المؤلفون تحديات وقيود هذه الأساليب ويقدمون نظرة ثاقبة للتطورات المستقبلية في هذا المجال سريع التطور. الوصف التفصيلي: يتعمق كتاب «الذكاء الاصطناعي والتعلم الآلي في تطوير وتطوير الأدوية» في الوضع الحالي لتكنولوجيا الذكاء الاصطناعي/ML في اكتشاف الأدوية وتطويرها، مما يسلط الضوء على قدرتها على تغيير الصناعة. يستكشف المؤلفون كيف يمكن للذكاء الاصطناعي/ML تحسين تصميم الأدوية وتطويرها، من تحديد الأهداف الواعدة إلى تحسين التجارب السريرية. يناقشون تحديات وقيود هذه الأساليب، مما يوفر فهمًا شاملاً للوضع الحالي للذكاء الاصطناعي/ML في اكتشاف الأدوية وتطويرها.
人工智能(AI)和機器學習(ML)徹底改變了藥物的開發和開發,從而可以產生更有效,更有效的藥物。本書概述了AI/ML的藥物檢測應用,從目標識別的早期階段到臨床試驗的優化。它涵蓋了多種技術,例如深度學習,強化學習和轉移學習,以及它們在不同治療領域的應用。作者討論了這些方法的問題和局限性,並深入了解了這一快速發展的領域的未來發展。詳細說明:《藥物開發和開發中的人工智能和機器學習》一書深入探討了AI/ML技術在藥物發現和開發領域的現狀,突顯了其轉型行業的潛力。作者研究了AI/ML如何改善藥物設計和開發,從確定有希望的目標到優化臨床試驗。他們討論了這些方法的問題和局限性,從而提供了對AI/ML在藥物發現和開發中的當前狀態的全面了解。

You may also be interested in:

Ultimate Machine Learning with Scikit-Learn: Unleash the Power of Scikit-Learn and Python to Build Cutting-Edge Predictive Modeling Applications and Unlock … Into Machine Learning (English Editi
Birth of Intelligence From RNA to Artificial Intelligence
Cracking The Machine Learning Interview 225 Machine Learning Interview Questions with Solutions
Machine Learning in Python Hands on Machine Learning with Python Tools, Concepts and Techniques
Machine Learning with Python Advanced and Effective Strategies Using Machine Learning with Python Theories
Machine Learning Step-by-Step Guide To Implement Machine Learning Algorithms with Python
Machine Learning For Beginners A Comprehensive Beginners Guide To Machine Learning, No Experience Required!
Mastering Classification Algorithms for Machine Learning: Learn how to apply Classification algorithms for effective Machine Learning solutions (English Edition)
Machine Learning With Python Programming 2023 A Beginners Guide The Definitive Guide to Mastering Machine Learning in Python and a Problem-Guide Solver to Creating Real-World Intelligent Systems
Machine Learning With Python Programming 2023 A Beginners Guide The Definitive Guide to Mastering Machine Learning in Python and a Problem-Guide Solver to Creating Real-World Intelligent Systems
Machine Intelligence for Internet of Medical Things: Applications and Future Trends (Computational Intelligence for Data Analysis Book 2)
Machine Learning in Trading: Step by step implementation of Machine Learning models
Machine Learning in Microservices: Productionizing microservices architecture for machine learning solutions
Deep Machine Learning Complete Tips and Tricks to Deep Machine Learning
Linear Algebra And Optimization With Applications To Machine Learning - Volume II Fundamentals of Optimization Theory with Applications to Machine Learning
Mastering ChatGPT and Google Colab for Machine Learning Automate AI Workflows and Fast-Track Your Machine Learning Tasks with the Power of ChatGPT, Google Colab, and Python
Hands-on Supervised Learning with Python Learn How to Solve Machine Learning Problems with Supervised Learning Algorithms
Mastering Excel VBA and Machine Learning A Complete, Step-by-Step Guide To Learn and Master Excel VBA and Machine Learning From Scratch
Signal Processing and Machine Learning for Brain-Machine Interfaces
Over 100+ Questions to AI Artificial Intelligence: Over 100+ Questions and Answers to AI Artificial Intelligence Book Guide Reference book guide
Machine Learning with Python Advanced Guide in Machine Learning with Python
Machine Learning with Python 3 in 1 Beginners Guide + Step by Step Methods + Advanced Methods and Strategies to Learn Machine Learning with Python
Machine Learning with Neural Networks An In-depth Visual Introduction with Python Make Your Own Neural Network in Python A Simple Guide on Machine Learning with Neural Networks
Machine Learning with Python A Step-By-Step Guide to Learn and Master Python Machine Learning
Machine Learning with Python Cookbook Practical Solutions from Preprocessing to Deep Learning
Machine Learning Master Supervised and Unsupervised Learning Algorithms with Real Examples
Bio-inspired Algorithms in Machine Learning and Deep Learning for Disease Detection
Machine Learning and Deep Learning Techniques in Wireless and Mobile Networking Systems
Learning Kernel Classifiers: Theory and Algorithms (Adaptive Computation and Machine Learning)
Disease Prediction using Machine Learning, Deep Learning and Data Analytics
Design of Intelligent Applications using Machine Learning and Deep Learning Techniques
Disease Prediction using Machine Learning, Deep Learning and Data Analytics
Learning TensorFlow.js Powerful Machine Learning in javascript
Building Intelligent Systems Using Machine Learning and Deep Learning Security, Applications and Its Challenges
Building Intelligent Systems Using Machine Learning and Deep Learning Security, Applications and Its Challenges
Elements of Causal Inference: Foundations and Learning Algorithms (Adaptive Computation and Machine Learning series)
Machine Learning with Python A Comprehensive Guide To Algorithms, Deep Learning Techniques, And Practical Applications
Hands-On Unsupervised Learning Using Python: How to Build Applied Machine Learning Solutions from Unlabeled Data
Machine Learning: Master Supervised and Unsupervised Learning Algorithms with Real Examples (English Edition)