BOOKS - Algorithmic Trading Essentials Python Integration for the Modern Trader
Algorithmic Trading Essentials Python Integration for the Modern Trader - Hayden Van Der Post 2024 PDF | AZW3 | EPUB | MOBI Reactive Publishing BOOKS
ECO~19 kg CO²

2 TON

Views
25039

Telegram
 
Algorithmic Trading Essentials Python Integration for the Modern Trader
Author: Hayden Van Der Post
Year: 2024
Pages: 592
Format: PDF | AZW3 | EPUB | MOBI
File size: 10.1 MB
Language: ENG



Pay with Telegram STARS
Algorithmic Trading Essentials Python Integration for the Modern Trader is a comprehensive guide that provides readers with the tools and techniques needed to develop their own algorithmic trading strategies using Python programming language. The book covers topics such as data sources, data cleaning, feature engineering, model selection, backtesting, and live trading, all within the context of Python integration. It also explores the use of machine learning algorithms and statistical models to create trading strategies that can be used in real-world markets. The book begins by introducing the concept of algorithmic trading and its importance in today's financial markets. It then delves into the details of Python programming language and its applications in algorithmic trading, including libraries such as NumPy, SciPy, and pandas. The next section discusses data sources and how to obtain, clean, and preprocess them for use in algorithmic trading strategies. This is followed by an in-depth look at feature engineering, which involves selecting and transforming raw data into features that can be used to train machine learning models. The book then moves on to model selection and evaluation, where various machine learning and statistical models are discussed, along with their strengths and weaknesses. Backtesting and live trading strategies are also covered, providing readers with a comprehensive understanding of the entire algorithmic trading process. Finally, the book concludes with a discussion on the future of algorithmic trading and its potential impact on the financial industry.
Algorithmic Trading Essentials Python Integration for the Modern Trader - это всеобъемлющее руководство, которое предоставляет читателям инструменты и методы, необходимые для разработки собственных алгоритмических торговых стратегий с использованием языка программирования Python. Книга охватывает такие темы, как источники данных, очистка данных, разработка функций, выбор моделей, бэктестинг и живая торговля, и все это в контексте интеграции Python. Также исследуется использование алгоритмов машинного обучения и статистических моделей для создания торговых стратегий, которые можно использовать на реальных рынках. Книга начинается с введения понятия алгоритмической торговли и ее важности на сегодняшних финансовых рынках. Затем он углубляется в детали языка программирования Python и его применения в алгоритмической торговле, включая такие библиотеки, как NumPy, SciPy и панды. В следующем разделе обсуждаются источники данных и способы их получения, очистки и предварительной обработки для использования в алгоритмических торговых стратегиях. Затем следует углубленный взгляд на разработку функций, которая включает выбор и преобразование необработанных данных в функции, которые можно использовать для обучения моделей машинного обучения. Затем книга переходит к выбору и оценке моделей, где обсуждаются различные модели машинного обучения и статистики, а также их сильные и слабые стороны. Также освещаются стратегии бэктестинга и живой торговли, предоставляя читателям всестороннее понимание всего алгоритмического процесса торговли. Наконец, книга завершается обсуждением будущего алгоритмической торговли и ее потенциального влияния на финансовую индустрию.
''

You may also be interested in:

Practical Time-Series Analysis Master Time Series Data Processing, Visualization, and Modeling using Python
Neural Network Computer Vision with OpenCV 5 Build computer vision solutions using Python and DNN module
Hands-On Data Analysis with Pandas Efficiently perform data collection, wrangling, analysis, and visualization using Python
Neural Network Computer Vision with OpenCV 5 Build computer vision solutions using Python and DNN module
Ultimate Data Science Programming in Python Master data science libraries with 300+ programs, 2 projects, and EDA GUI tools
ITS-303 Python Programming Realistic Mock Tests 340+ Realistic questions and explanations to get you ITS-303 Exam certified on your 1st attempt
ITS-303 Python Programming Realistic Mock Tests 340+ Realistic questions and explanations to get you ITS-303 Exam certified on your 1st attempt
ITS-303 Python Programming Realistic Mock Tests: 340+ Realistic questions and explanations to get you ITS-303 Exam certified on your 1st attempt.
Ultimate Data Science Programming in Python Master data science libraries with 300+ programs, 2 projects, and EDA GUI tools
Machine Learning With Python For Beginners: A Step-By-Step Guide with Hands-On Projects (Learn Coding Fast with Hands-On Project Book 7)
Programming Arduino With Python For Robots (2020 Edition) A Beginner to Advanced Reference Guide to Arduino programming for Microcontroller processing and Robotics
Time Series Analysis with Python Cookbook: Practical recipes for exploratory data analysis, data preparation, forecasting, and model evaluation
Active Machine Learning with Python: Refine and elevate data quality over quantity with active learning
AI Powered Financial Analysis Harnessing Artificial Intelligence for Financial Analysis and Market Insights with Python
Intro to Python for Computer Science and Data Science Learning to Program with AI, Big Data and The Cloud
Machine Learning A Guide to PyTorch, TensorFlow, and Scikit-Learn Mastering Machine Learning With Python
Machine Learning for Beginners Build and deploy Machine Learning systems using Python, 2nd Edition
Jesus and Brian: Exploring the Historical Jesus and his Times via Monty Python|s Life of Brian
Synthetic Data for Deep Learning Generate Synthetic Data for Decision Making and Applications with Python and R
Deep Learning for Data Architects Unleash the power of Python|s deep learning algorithms
Machine Learning: A Guide to PyTorch, TensorFlow, and Scikit-Learn: Mastering Machine Learning With Python
AI Powered Financial Analysis: Harnessing Artificial Intelligence for Financial Analysis and Market Insights with Python
Building Websites with Django Build and Deploy Professional Websites with Python Programming and the Django Framework
AI Powered Financial Analysis Harnessing Artificial Intelligence for Financial Analysis and Market Insights with Python
Deep Learning for Data Architects Unleash the power of Python|s deep learning algorithms
Graph Data Modeling in Python: A practical guide to curating, analyzing, and modeling data with graphs
Machine Learning A Guide to PyTorch, TensorFlow, and Scikit-Learn Mastering Machine Learning With Python
The Power of Python (Power of Coding)
Machine Learning in Python for Dynamic Process Systems A practitioner’s guide for building process modeling, predictive, and monitoring solutions using dynamic data
Learn AI with Python: Explore Machine Learning and Deep Learning techniques for Building Smart AI Systems Using Scikit-Learn, NLTK, NeuroLab, and Keras
Tensorflow for Quantitative Finance Transform Financial Analysis with TensorFlow|s Cutting-Edge Machine Learning Techniques (Python Libraries for Finance)
Machine Learning in Python for Dynamic Process Systems A practitioner’s guide for building process modeling, predictive, and monitoring solutions using dynamic data
Tensorflow for Quantitative Finance Transform Financial Analysis with TensorFlow|s Cutting-Edge Machine Learning Techniques (Python Libraries for Finance)
Python Data Science The Ultimate Handbook for Beginners on How to Explore NumPy for Numerical Data, Pandas for Data Analysis, IPython, Scikit-Learn and Tensorflow for Machine Learning and Business
Data Analytics for Absolute Beginners: Make Decisions Using Every Variable: (Introduction to Data, Data Visualization, Business Intelligence and Machine … Science, Python and Statistics for Begi
OpenAI GPT For Python Developers: The art and science of developing intelligent apps with OpenAI GPT-3, DALL.E 2, CLIP, and Whisper - Suitable for learners of all levels
Statistics, Data Mining, and Machine Learning in Astronomy: A Practical Python Guide for the Analysis of Survey Data (Princeton Series in Modern Observational Astronomy, 1)
Pandas in 7 Days: Utilize Python to Manipulate Data, Conduct Scientific Computing, Time Series Analysis, and Exploratory Data Analysis (English Edition)
Tensorflow for Quantitative Finance: Transform Financial Analysis with TensorFlow|s Cutting-Edge Machine Learning Techniques (Python Libraries for Finance Book 5)
Pragmatic Machine Learning with Python Learn How to Deploy Machine Learning Models in Production