BOOKS - AI and Data Engineering Solutions for Effective Marketing
AI and Data Engineering Solutions for Effective Marketing - Lhoussaine Alla, Aziz Hmioui, Badr Bentalha 2024 PDF | EPUB IGI Global BOOKS
ECO~19 kg CO²

2 TON

Views
5585

Telegram
 
AI and Data Engineering Solutions for Effective Marketing
Author: Lhoussaine Alla, Aziz Hmioui, Badr Bentalha
Year: 2024
Pages: 520
Format: PDF | EPUB
File size: 26.4 MB
Language: ENG



Pay with Telegram STARS
The book "AI and Data Engineering Solutions for Effective Marketing" provides a comprehensive overview of the current state of artificial intelligence (AI) and data engineering solutions in marketing, highlighting their potential benefits and challenges. It covers topics such as machine learning, natural language processing, computer vision, and predictive analytics, and how they can be applied to various marketing strategies. The book also explores the ethical implications of using AI and data engineering in marketing, including privacy concerns and biases. The book begins by discussing the history and development of AI and data engineering, from their early beginnings to the present day. It then delves into the various applications of AI and data engineering in marketing, including personalization, segmentation, and customer profiling. The book also examines the role of AI in content creation, social media monitoring, and influencer marketing. One of the key themes of the book is the need for marketers to understand the technological process of developing modern knowledge and its impact on society. The author argues that this understanding is essential for effective marketing and for ensuring that AI and data engineering are used responsibly and ethically. The book emphasizes the importance of developing a personal paradigm for perceiving the technological process of developing modern knowledge, which can help individuals and organizations navigate the rapidly changing landscape of technology and marketing.
Книга «Решения для искусственного интеллекта и инженерии данных для эффективного маркетинга» содержит всесторонний обзор текущего состояния искусственного интеллекта (ИИ) и решений для инженерии данных в маркетинге, подчеркивая их потенциальные преимущества и проблемы. Он охватывает такие темы, как машинное обучение, обработка естественного языка, компьютерное зрение и предиктивная аналитика, а также то, как их можно применить к различным маркетинговым стратегиям. В книге также рассматриваются этические последствия использования ИИ и инженерии данных в маркетинге, включая проблемы конфиденциальности и предубеждения. Книга начинается с обсуждения истории и развития ИИ и инженерии данных, от их раннего начала до наших дней. Затем он углубляется в различные приложения искусственного интеллекта и инженерии данных в маркетинге, включая персонализацию, сегментацию и профилирование клиентов. В книге также рассматривается роль ИИ в создании контента, мониторинге социальных сетей и маркетинге влияния. Одна из ключевых тем книги - необходимость понимания маркетологами технологического процесса развития современного знания и его влияния на общество. Автор утверждает, что это понимание имеет важное значение для эффективного маркетинга и для обеспечения того, чтобы ИИ и инженерия данных использовались ответственно и этично. В книге подчеркивается важность выработки личностной парадигмы восприятия технологического процесса развития современных знаний, которая может помочь отдельным лицам и организациям ориентироваться в быстро меняющемся ландшафте технологий и маркетинга.
''

You may also be interested in:

Attribute-Based Encryption and Access Control (Data-Enabled Engineering)
Information-Driven Machine Learning Data Science as an Engineering Discipline
Data Science in Engineering and Management Applications, New Developments, and Future Trends
Software Engineering for Data Scientists From Notebooks to Scalable Systems (Final)
Feature Engineering for Machine Learning Principles and Techniques for Data Scientists
Software Engineering for Data Scientists From Notebooks to Scalable Systems (Final)
Basics of Power BI Modeling: The fundamental lessons of building a data model that works best for Power BI solutions
Hands-On Unsupervised Learning Using Python: How to Build Applied Machine Learning Solutions from Unlabeled Data
Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control
Data-Driven Science and Engineering Machine Learning, Dynamical Systems, and Control
Data Driven Decisions Systems Engineering to Understand Corporate Value and Intangible Assets
Analytics Engineering with SQL and dbt Building Meaningful Data Models at Scale
Analytics Engineering with SQL and dbt Building Meaningful Data Models at Scale
Data Driven Decisions Systems Engineering to Understand Corporate Value and Intangible Assets
Mastering Cloud Storage Navigating cloud solutions, data security, and cost optimization for seamless digital transformation
Mastering Cloud Storage Navigating cloud solutions, data security, and cost optimization for seamless digital transformation
Introduction to Scientific Computing and Data Analysis (Texts in Computational Science and Engineering Book 13)
Data Analytics Practical Guide to Leveraging the Power of Algorithms, Data Science, Data Mining, Statistics, Big Data, and Predictive Analysis to Improve Business, Work, and Life
Data Analytics: Practical Guide to Leveraging the Power of Algorithms, Data Science, Data Mining, Statistics, Big Data, and Predictive Analysis to Improve Business, Work, and Life
Docker Tutorial for Beginners: Learn Programming, Containers, Data Structures, Software Engineering, and Coding
Applied Machine Learning for Smart Data Analysis (Computational Intelligence in Engineering Problem Solving)
Let Us Python Solutions - 5th Edition: Learn By Doing - The Python Learning Mantra Solutions to all Exercises in Let Us Python Cross-check Your Solutions (English Edition)
The Data Revolution Big Data, Open Data, Data Infrastructures and Their Consequences
Recent Advances in Data and Algorithms for e-Government (Artificial Intelligence-Enhanced Software and Systems Engineering Book 5)
Feature Engineering for Modern Machine Learning with Scikit-Learn Advanced Data Science and Practical Applications
Advances in Signal and Data Processing: Select Proceedings of ICSDP 2019 (Lecture Notes in Electrical Engineering, 703)
Sustainable Communication Networks and Application: Proceedings of ICSCN 2020 (Lecture Notes on Data Engineering and Communications Technologies, 55)
Research Software Engineering: A Guide to the Open Source Ecosystem (Chapman and Hall CRC Data Science Series)
Data Modeling Made Simple with Embarcadero ER/Studio Data Architect Adapting to Agile Data Modeling in a Big Data World
Modern Data Architectures with Python: A practical guide to building and deploying data pipelines, data warehouses, and data lakes with Python
Fundamentals of Analytics Engineering: An introduction to building end-to-end analytics solutions
Big Data and Cloud Computing: Select Proceedings of ICBCC 2022 (Lecture Notes in Electrical Engineering Book 1021)
Algorithms: Big Data, Optimization Techniques, Cyber Security (De Gruyter Series on the Applications of Mathematics in Engineering and Information Sciences, 17)
Optimizing AI and Machine Learning Solutions Your ultimate guide to building high-impact ML/AI solutions
Optimizing AI and Machine Learning Solutions Your ultimate guide to building high-impact ML/AI solutions
Intelligent Data Analysis From Data Gathering to Data Comprehension (The Wiley Series in Intelligent Signal and Data Processing)
Information Technology for Education, Science, and Technics: Proceedings of ITEST 2022 (Lecture Notes on Data Engineering and Communications Technologies, 178)
Machine Learning in Python for Dynamic Process Systems A practitioner’s guide for building process modeling, predictive, and monitoring solutions using dynamic data
Machine Learning in Python for Dynamic Process Systems A practitioner’s guide for building process modeling, predictive, and monitoring solutions using dynamic data
Optimizing AI and Machine Learning Solutions: Your ultimate guide to building high-impact ML AI solutions (English Edition)