BOOKS - Introduction to Data Governance for Machine Learning Systems Fundamental Prin...
Introduction to Data Governance for Machine Learning Systems Fundamental Principles, Critical Practices, and Future Trends - Aditya Nandan Prasad 2024 PDF | EPUB Apress BOOKS
ECO~23 kg CO²

2 TON

Views
23817

Telegram
 
Introduction to Data Governance for Machine Learning Systems Fundamental Principles, Critical Practices, and Future Trends
Author: Aditya Nandan Prasad
Year: 2024
Pages: 731
Format: PDF | EPUB
File size: 10.1 MB
Language: ENG



Pay with Telegram STARS
The book "Introduction to Data Governance for Machine Learning Systems: Fundamental Principles, Critical Practices, and Future Trends" provides a comprehensive overview of the essential concepts, principles, and practices of data governance in the context of machine learning systems. The book covers the fundamental principles of data governance, critical practices, and future trends, offering insights into the evolving landscape of data governance in the age of machine learning. The book is divided into three main parts: Part I explores the foundational principles of data governance, including data quality, data security, and data privacy; Part II delves into critical practices such as data management, data integration, and data validation; and Part III examines emerging trends in data governance, including blockchain, artificial intelligence, and the Internet of Things (IoT). The book begins by emphasizing the importance of understanding the process of technology evolution and its impact on society. As technology continues to advance at an unprecedented pace, it is crucial to recognize the need for a personal paradigm for perceiving the technological process of developing modern knowledge. This involves developing a deep appreciation for the interconnectedness of technology, society, and humanity, and recognizing the potential for technology to both empower and disempower individuals and communities. The book argues that this awareness is essential for harnessing the power of technology to create a better future for all.
В книге «Введение в управление данными для систем машинного обучения: фундаментальные принципы, критические практики и будущие тенденции» представлен всесторонний обзор основных концепций, принципов и практик управления данными в контексте систем машинного обучения. Книга охватывает фундаментальные принципы управления данными, критические практики и будущие тенденции, предлагая понимание развивающегося ландшафта управления данными в эпоху машинного обучения. Книга разделена на три основные части: в части I рассматриваются основополагающие принципы управления данными, включая качество данных, безопасность данных и конфиденциальность данных; Часть II углубляется в критически важные практики, такие как управление данными, интеграция данных и проверка данных; и в части III рассматриваются новые тенденции в управлении данными, включая блокчейн, искусственный интеллект и интернет вещей (IoT). Книга начинается с подчеркивания важности понимания процесса эволюции технологий и его влияния на общество. Поскольку технологии продолжают развиваться беспрецедентными темпами, крайне важно признать необходимость личной парадигмы восприятия технологического процесса развития современных знаний. Это включает в себя развитие глубокого понимания взаимосвязанности технологий, общества и человечества, а также признание потенциала технологий как для расширения возможностей, так и для лишения власти отдельных лиц и сообществ. В книге утверждается, что эта осведомленность необходима для использования возможностей технологий для создания лучшего будущего для всех.
Introduction à la gestion des données pour les systèmes d'apprentissage automatique : principes fondamentaux, pratiques critiques et tendances futures présente un aperçu complet des concepts, principes et pratiques de base de la gestion des données dans le contexte des systèmes d'apprentissage automatique. livre aborde les principes fondamentaux de la gestion des données, les pratiques critiques et les tendances futures, en offrant une compréhension du paysage évolutif de la gestion des données à l'ère de l'apprentissage automatique. livre est divisé en trois parties principales : la partie I traite des principes fondamentaux de la gestion des données, y compris la qualité des données, la sécurité des données et la confidentialité des données ; La deuxième partie est consacrée aux pratiques essentielles telles que la gestion des données, l'intégration des données et la validation des données ; et la partie III examine les nouvelles tendances dans la gestion des données, y compris le blockchain, l'intelligence artificielle et l'Internet des objets (IoT). livre commence par souligner l'importance de comprendre l'évolution de la technologie et son impact sur la société. Alors que la technologie continue d'évoluer à un rythme sans précédent, il est essentiel de reconnaître la nécessité d'un paradigme personnel pour la perception du processus technologique du développement des connaissances modernes. Il s'agit notamment de développer une compréhension approfondie de l'interdépendance entre la technologie, la société et l'humanité, et de reconnaître le potentiel de la technologie à la fois pour l'autonomisation et le déni de pouvoir des individus et des communautés. livre affirme que cette prise de conscience est nécessaire pour exploiter les possibilités de la technologie pour créer un avenir meilleur pour tous.
libro Introducción a la gestión de datos para sistemas de aprendizaje automático: principios fundamentales, prácticas críticas y tendencias futuras ofrece una visión general de los conceptos, principios y prácticas básicos de la gestión de datos en el contexto de los sistemas de aprendizaje automático. libro cubre los principios fundamentales de la gestión de datos, las prácticas críticas y las tendencias futuras, ofreciendo una comprensión del panorama en desarrollo de la gestión de datos en la era del aprendizaje automático. libro se divide en tres partes principales: la parte I aborda los principios fundamentales de la gestión de los datos, incluida la calidad de los datos, la seguridad de los datos y la confidencialidad de los datos; La parte II profundiza en prácticas críticas como la gestión de datos, la integración de datos y la validación de datos; y en la parte III se examinan las nuevas tendencias en la gestión de datos, incluidas la cadena de bloques, la inteligencia artificial y el Internet de las cosas (IoT). libro comienza subrayando la importancia de entender el proceso de evolución de la tecnología y su impacto en la sociedad. A medida que la tecnología continúa evolucionando a un ritmo sin precedentes, es fundamental reconocer la necesidad de un paradigma personal para percibir el proceso tecnológico del desarrollo del conocimiento moderno. Esto incluye el desarrollo de una comprensión profunda de la interrelación entre la tecnología, la sociedad y la humanidad, así como el reconocimiento del potencial de la tecnología tanto para empoderar como para privar de poder a individuos y comunidades. libro sostiene que esta conciencia es necesaria para aprovechar las oportunidades de la tecnología para crear un futuro mejor para todos.
Il libro Introduzione alla gestione dei dati per i sistemi di apprendimento automatico: principi fondamentali, pratiche critiche e tendenze future fornisce una panoramica completa dei concetti, dei principi e delle pratiche di gestione dei dati nel contesto dei sistemi di apprendimento automatico. Il libro comprende i principi fondamentali per la gestione dei dati, le pratiche critiche e le tendenze future, offrendo una comprensione dello scenario emergente della gestione dei dati nell'era dell'apprendimento automatico. Il libro è suddiviso in tre parti principali: la parte I affronta i principi fondamentali della gestione dei dati, inclusa la qualità dei dati, la sicurezza dei dati e la privacy dei dati. La parte II viene approfondita nelle pratiche critiche, come la gestione dei dati, l'integrazione dei dati e la verifica dei dati. e la parte III affronta le nuove tendenze nella gestione dei dati, tra cui blockchain, intelligenza artificiale e Internet delle cose (IoT). Il libro inizia sottolineando l'importanza di comprendere l'evoluzione della tecnologia e il suo impatto sulla società. Dato che la tecnologia continua a crescere a un ritmo senza precedenti, è fondamentale riconoscere la necessità di un paradigma personale della percezione del processo tecnologico di sviluppo della conoscenza moderna. Ciò include lo sviluppo di una profonda comprensione dell'interconnessione tra tecnologia, società e umanità, e il riconoscimento del potenziale della tecnologia sia per ampliare le opportunità che per privare il potere degli individui e delle comunità. Il libro afferma che questa consapevolezza è necessaria per sfruttare le opportunità della tecnologia per creare un futuro migliore per tutti.
Das Buch „Introduction to Data Management for Machine arning Systems: Fundamental Principles, Critical Practices and Future Trends“ bietet einen umfassenden Überblick über grundlegende Konzepte, Prinzipien und Praktiken des Datenmanagements im Kontext maschineller rnsysteme. Das Buch behandelt grundlegende Prinzipien des Datenmanagements, kritische Praktiken und zukünftige Trends und bietet Einblicke in die sich entwickelnde Datenmanagementlandschaft im Zeitalter des maschinellen rnens. Das Buch gliedert sich in drei Hauptteile: Teil I behandelt die grundlegenden Prinzipien des Datenmanagements, einschließlich Datenqualität, Datensicherheit und Datenschutz; Teil II vertieft sich in kritische Praktiken wie Datenmanagement, Datenintegration und Datenvalidierung; und Teil III befasst sich mit neuen Trends im Datenmanagement, einschließlich Blockchain, künstlicher Intelligenz und dem Internet der Dinge (IoT). Das Buch beginnt mit der Betonung der Bedeutung des Verständnisses des technologischen Evolutionsprozesses und seiner Auswirkungen auf die Gesellschaft. Da sich die Technologie in einem beispiellosen Tempo weiterentwickelt, ist es von entscheidender Bedeutung, die Notwendigkeit eines persönlichen Paradigmas für die Wahrnehmung des technologischen Prozesses der Entwicklung des modernen Wissens zu erkennen. Dazu gehört es, ein tiefes Verständnis für die Verflechtung von Technologie, Gesellschaft und Menschheit zu entwickeln und das Potenzial der Technologie zu erkennen, sowohl zu befähigen als auch Individuen und Gemeinschaften zu entmachten. Das Buch argumentiert, dass dieses Bewusstsein notwendig ist, um die Möglichkeiten der Technologie zu nutzen, um eine bessere Zukunft für alle zu schaffen.
''
Makine Öğrenimi stemleri için Veri Yönetimine Giriş: Temeller, Kritik Uygulamalar ve Gelecek Eğilimler, makine öğrenimi sistemleri bağlamında veri yönetiminin temel kavramları, ilkeleri ve uygulamaları hakkında kapsamlı bir genel bakış sağlar. Kitap, temel veri yönetimi ilkelerini, kritik uygulamaları ve gelecekteki eğilimleri kapsamakta ve makine öğrenimi çağında gelişen veri yönetimi ortamına dair fikir vermektedir. Kitap üç ana bölüme ayrılmıştır: Bölüm I, veri kalitesi, veri güvenliği ve veri gizliliği dahil olmak üzere veri yönetiminin temel ilkelerini ele almaktadır; Bölüm II, veri yönetimi, veri entegrasyonu ve veri doğrulama gibi kritik uygulamaları ele alır; Ve Bölüm III, blockchain, yapay zeka ve nesnelerin interneti (IoT) dahil olmak üzere veri yönetiminde ortaya çıkan trendlere bakar. Kitap, teknolojinin evrim sürecini ve toplum üzerindeki etkisini anlamanın önemini vurgulayarak başlıyor. Teknoloji benzeri görülmemiş bir hızda gelişmeye devam ettikçe, modern bilginin geliştirilmesinin teknolojik sürecinin algılanması için kişisel bir paradigmaya duyulan ihtiyacı tanımak zorunludur. Bu, teknoloji, toplum ve insanlığın birbirine bağlılığı hakkında derin bir anlayış geliştirmeyi ve teknolojinin bireyleri ve toplulukları hem güçlendirmek hem de güçsüzleştirmek için potansiyelini tanımayı içerir. Kitap, bu farkındalığın herkes için daha iyi bir gelecek yaratmak için teknolojinin gücünden yararlanmak için gerekli olduğunu savunuyor.
《機械學習系統數據管理導言:基本原則、批判性做法和未來趨勢》一書全面概述了機械學習系統背景下的基本數據管理概念、原則和做法。該書涵蓋了數據管理的基本原理,關鍵實踐和未來趨勢,提供了對機器學習時代不斷發展的數據管理格局的見解。該書分為三個主要部分:第一部分涉及數據管理的基本原則,包括數據質量,數據安全和數據隱私;第二部分深入研究關鍵實踐,例如數據管理,數據集成和數據驗證;第三部分探討了數據管理的新趨勢,包括區塊鏈、人工智能和物聯網(IoT)。本書首先強調了了解技術演變過程及其對社會影響的重要性。由於技術繼續以前所未有的速度發展,因此必須認識到需要以個人方式認識現代知識的技術發展。這包括深入了解技術、社會和人類之間的相互聯系,以及認識到技術在賦予個人和社區權力和剝奪其權力方面的潛力。該書認為,這種認識對於利用技術的能力為所有人創造更美好的未來至關重要。

You may also be interested in:

Automating Data Quality Monitoring at Scale Scaling Beyond Rules with Machine Learning (Final)
Machine Learning Upgrade A Data Scientist|s Guide to MLOps, LLMs, and ML Infrastructure
Introduction to Statistics: An Intuitive Guide for Analyzing Data and Unlocking Discoveries
Data Analytics Practical Guide to Leveraging the Power of Algorithms, Data Science, Data Mining, Statistics, Big Data, and Predictive Analysis to Improve Business, Work, and Life
Data Analytics: Practical Guide to Leveraging the Power of Algorithms, Data Science, Data Mining, Statistics, Big Data, and Predictive Analysis to Improve Business, Work, and Life
Advanced Data Analytics with AWS Explore Data Analysis Concepts in the Cloud to Gain Meaningful Insights and Build Robust Data Engineering Workflows Across Diverse Data Sources
Advanced Data Analytics with AWS Explore Data Analysis Concepts in the Cloud to Gain Meaningful Insights and Build Robust Data Engineering Workflows Across Diverse Data Sources
Machine Learning Cookbook with Python Create ML and Data Analytics Projects Using Some Amazing Open Datasets
Before Machine Learning Volume 1 - Linear Algebra for A.I: The fundamental mathematics for Data Science and Artificial Inteligence.
Architecting Data and Machine Learning Platforms Enable Analytics and AI-Driven Innovation in the Cloud (Final)
Graph-Powered Analytics and Machine Learning with TigerGraph: Driving Business Outcomes with Connected Data
Machine Learning Interview Guide Job-oriented questions and answers for data scientists and engineers
Detecting Regime Change in Computational Finance Data Science, Machine Learning and Algorithmic Trading
Google BigQuery The Definitive Guide Data Warehousing, Analytics, and Machine Learning at Scale, First Edition
Architecting Data and Machine Learning Platforms Enable Analytics and AI-Driven Innovation in the Cloud (Final)
Applied Text Analysis with Python Enabling Language Aware Data Products with Machine Learning
Before Machine Learning Volume 1 - Linear Algebra for A.I. The fundamental mathematics for Data Science and Artificial Inteligence
Artificial Intelligence and Machine Learning for Business A No-Nonsense Guide to Data Driven Technologies, Third Edition
Before Machine Learning Volume 1 - Linear Algebra for A.I. The fundamental mathematics for Data Science and Artificial Inteligence
Applied Machine Learning for Smart Data Analysis (Computational Intelligence in Engineering Problem Solving)
Introduction to NFL Analytics with R (Chapman and Hall CRC Data Science Series)
Introduction to Java Programming and Data Structures, Comprehensive Version 11th Edition
Java Foundations Introduction to Program Design and Data Structures 5th Edition
Advanced Data Analytics with AWS: Explore Data Analysis Concepts in the Cloud to Gain Meaningful Insights and Build Robust Data Engineering Workflows Across Diverse Data Sources (English Edition)
Machine Learning for Civil and Environmental Engineers: A Practical Approach to Data-Driven Analysis, Explainability, and Causality
Fusion of Artificial Intelligence and Machine Learning for Advanced Image Processing, Data Analysis, and Cyber Security
Power BI Machine Learning and OpenAI: Explore data through business intelligence, predictive analytics, and text generation
Machine Learning and Data Science Blueprints for Finance: From Building Trading Strategies to Robo-Advisors Using Python
Machine Learning for Civil and Environmental Engineers A Practical Approach to Data-driven Analysis, Explainability, and Causality
Feature Engineering for Modern Machine Learning with Scikit-Learn Advanced Data Science and Practical Applications
Fusion of Artificial Intelligence and Machine Learning for Advanced Image Processing, Data Analysis, and Cyber Security
Machine Learning for Business How to Build Artificial Intelligence through Concepts of Statistics, Algorithms, Analysis, and Data Mining
Machine Learning Design Patterns: Solutions to Common Challenges in Data Preparation, Model Building, and MLOps
The Pragmatist|s Guide to Governance: From high school cliques to boards, family offices, and nations: A guide to optimizing governance models
Governance in Northern Ontario: Economic Development and Policy Making (The Institute of Public Administration of Canada Series in Public Management and Governance)
An Introduction to Spatial Data Analysis Remote Sensing and GIS with Open Source Software
Introduction to Data Science A Python Approach to Concepts, Techniques and Applications 2nd Edition
Creating Data-Driven Web Sites An Introduction to HTML, CSS, PHP, and MySQL
Introduction to Scientific Computing and Data Analysis (Texts in Computational Science and Engineering Book 13)
Introduction to Data Science A Python Approach to Concepts, Techniques and Applications 2nd Edition