BOOKS - Shallow Learning vs. Deep Learning A Practical Guide for Machine Learning Sol...
Shallow Learning vs. Deep Learning A Practical Guide for Machine Learning Solutions - Omer Faruk Ertugrul, Josep M Guerrero, Musa Yilmaz 2024 PDF | EPUB Springer BOOKS
ECO~14 kg CO²

1 TON

Views
52582

Telegram
 
Shallow Learning vs. Deep Learning A Practical Guide for Machine Learning Solutions
Author: Omer Faruk Ertugrul, Josep M Guerrero, Musa Yilmaz
Year: 2024
Pages: 283
Format: PDF | EPUB
File size: 45.5 MB
Language: ENG



Pay with Telegram STARS
Shallow Learning vs Deep Learning A Practical Guide for Machine Learning Solutions In this book, we explore the differences between shallow learning and deep learning, two fundamental approaches to machine learning that have revolutionized the field of artificial intelligence. We delve into the strengths and weaknesses of each approach, discussing their applications, advantages, and limitations. We also examine the current state of the field, including recent advances and future trends, and provide practical guidance on how to choose the right approach for your specific needs. Whether you're a seasoned practitioner or just starting out, this guide will help you navigate the complex world of machine learning and make informed decisions about your projects. The book begins by defining the terms "shallow learning" and "deep learning," explaining the key concepts and techniques associated with each approach. We then dive into the history of these methods, tracing their development and evolution over time. Next, we examine the similarities and differences between shallow and deep learning, highlighting the unique characteristics of each approach and how they are applied in real-world scenarios. The heart of the book focuses on the practical aspects of shallow and deep learning, providing step-by-step instructions for implementing these methods in your own projects. We cover a range of topics, from data preparation and model selection to training and evaluation, offering tips and tricks for achieving optimal results.
Shallow arning vs Deep arning Практическое руководство по решениям для машинного обучения В этой книге мы исследуем различия между поверхностным обучением и глубоким обучением, двумя фундаментальными подходами к машинному обучению, которые произвели революцию в области искусственного интеллекта. Мы углубляемся в сильные и слабые стороны каждого подхода, обсуждая их применение, преимущества и ограничения. Мы также изучаем текущее состояние этой области, включая последние достижения и будущие тенденции, и предоставляем практические рекомендации о том, как выбрать правильный подход к вашим конкретным потребностям. Независимо от того, являетесь ли вы опытным практиком или только начинаете, это руководство поможет вам ориентироваться в сложном мире машинного обучения и принимать обоснованные решения о ваших проектах. Книга начинается с определения терминов «поверхностное обучение» и «глубокое обучение», объясняющих ключевые понятия и техники, связанные с каждым подходом. Затем мы погружаемся в историю этих методов, прослеживая их развитие и эволюцию во времени. Затем мы рассмотрим сходства и различия между поверхностным и глубоким обучением, выделив уникальные характеристики каждого подхода и то, как они применяются в реальных сценариях. В основе книги - практические аспекты неглубокого и глубокого обучения, дающие пошаговые инструкции по внедрению этих методов в собственные проекты. Мы охватываем целый ряд тем, от подготовки данных и выбора модели до обучения и оценки, предлагая советы и рекомендации для достижения оптимальных результатов.
Shallow arning vs Deep arning Guide pratique des solutions d'apprentissage automatique Dans ce livre, nous explorons les différences entre l'apprentissage de surface et l'apprentissage profond, deux approches fondamentales de l'apprentissage automatique qui ont révolutionné l'intelligence artificielle. Nous approfondirons les forces et les faiblesses de chaque approche en discutant de leur application, de leurs avantages et de leurs limites. Nous examinons également l'état actuel de ce domaine, y compris les dernières réalisations et les tendances futures, et fournissons des conseils pratiques sur la façon de choisir la bonne approche pour vos besoins spécifiques. Que vous soyez un praticien expérimenté ou que vous commenciez à peine, ce guide vous aidera à naviguer dans le monde complexe de l'apprentissage automatique et à prendre des décisions éclairées sur vos projets. livre commence par la définition des termes « apprentissage de surface » et « apprentissage profond » expliquant les concepts et techniques clés associés à chaque approche. Nous plongeons ensuite dans l'histoire de ces techniques, en retraçant leur évolution et leur évolution dans le temps. Ensuite, nous examinerons les similitudes et les différences entre l'apprentissage de surface et l'apprentissage profond, en mettant en évidence les caractéristiques uniques de chaque approche et la façon dont elles sont appliquées dans les scénarios réels. livre se fonde sur les aspects pratiques de l'apprentissage peu profond et profond, donnant des instructions étape par étape sur la façon d'intégrer ces méthodes dans vos propres projets. Nous couvrons une gamme de sujets allant de la préparation des données et du choix du modèle à la formation et à l'évaluation, en offrant des conseils et des recommandations pour obtenir des résultats optimaux.
Shallow arning vs Deep arning Guía práctica de soluciones de aprendizaje automático En este libro exploramos las diferencias entre el aprendizaje superficial y el aprendizaje profundo, dos enfoques fundamentales del aprendizaje automático que revolucionaron el campo de la inteligencia artificial. Profundizamos en las fortalezas y debilidades de cada enfoque, discutiendo su aplicación, beneficios y limitaciones. También exploramos el estado actual de esta área, incluyendo los últimos avances y tendencias futuras, y proporcionamos orientación práctica sobre cómo elegir el enfoque adecuado para sus necesidades específicas. Ya sea que seas un practicante experimentado o que acabas de comenzar, esta guía te ayudará a navegar por el complejo mundo del aprendizaje automático y tomar decisiones informadas sobre tus proyectos. libro comienza con la definición de los términos «aprendizaje superficial» y «aprendizaje profundo», explicando los conceptos y técnicas clave relacionadas con cada enfoque. Luego nos sumergimos en la historia de estos métodos, trazando su desarrollo y evolución en el tiempo. A continuación, analizaremos las similitudes y diferencias entre el aprendizaje superficial y profundo, destacando las características únicas de cada enfoque y cómo se aplican en escenarios reales. libro se basa en aspectos prácticos del aprendizaje superficial y profundo, dando instrucciones paso a paso para introducir estas técnicas en sus propios proyectos. Abarcamos una amplia gama de temas, desde la preparación de datos y la selección de modelos hasta el aprendizaje y la evaluación, ofreciendo consejos y recomendaciones para obtener resultados óptimos.
Shallow arning vs Deep arning Manuale pratico delle soluzioni di apprendimento automatico In questo libro esploriamo le differenze tra apprendimento superficiale e apprendimento profondo, due approcci fondamentali all'apprendimento automatico che hanno rivoluzionato l'intelligenza artificiale. Stiamo approfondendo i punti di forza e di debolezza di ogni approccio, discutendone l'applicazione, i vantaggi e i limiti. Stiamo analizzando anche lo stato attuale di questo settore, inclusi i progressi recenti e le tendenze future, e fornendo suggerimenti pratici su come scegliere il giusto approccio alle vostre esigenze specifiche. Che tu sia un professionista esperto o che stia solo iniziando, questo manuale vi aiuterà a orientarvi nel complesso mondo dell'apprendimento automatico e a prendere decisioni ragionevoli sui vostri progetti. Il libro inizia con la definizione dei termini «apprendimento superficiale» e «apprendimento profondo», che spiegano i concetti e le tecniche chiave di ogni approccio. Poi ci immergiamo nella storia di questi metodi, tracciandone lo sviluppo e l'evoluzione nel tempo. Poi esamineremo le somiglianze e le differenze tra apprendimento superficiale e profondo, evidenziando le caratteristiche uniche di ogni approccio e il modo in cui vengono applicate in scenari reali. Il libro si basa su aspetti pratici di apprendimento approfondito e approfondito che forniscono istruzioni passo passo per implementare questi metodi nei propri progetti. tratta di una serie di argomenti, dalla preparazione dei dati alla scelta del modello alla formazione e alla valutazione, offrendo suggerimenti e suggerimenti per ottenere risultati ottimali.
Shallow arning vs Deep arning Ein praktischer itfaden für Machine-arning-Lösungen In diesem Buch untersuchen wir die Unterschiede zwischen Surface arning und Deep arning, zwei grundlegenden Ansätzen für maschinelles rnen, die das Feld der künstlichen Intelligenz revolutioniert haben. Wir gehen auf die Stärken und Schwächen jedes Ansatzes ein und diskutieren ihre Anwendungen, Vorteile und Einschränkungen. Wir untersuchen auch den aktuellen Stand dieses Bereichs, einschließlich der jüngsten Fortschritte und zukünftiger Trends, und geben praktische Empfehlungen, wie e den richtigen Ansatz für Ihre spezifischen Bedürfnisse wählen können. Ob e ein erfahrener Praktiker sind oder gerade erst anfangen, dieser itfaden hilft Ihnen, durch die komplexe Welt des maschinellen rnens zu navigieren und fundierte Entscheidungen über Ihre Projekte zu treffen. Das Buch beginnt mit der Definition der Begriffe „oberflächliches rnen“ und „tiefes rnen“ und erklärt die wichtigsten Konzepte und Techniken, die mit jedem Ansatz verbunden sind. Wir tauchen dann in die Geschichte dieser Methoden ein und verfolgen ihre Entwicklung und Entwicklung im Laufe der Zeit. Wir werden dann die Ähnlichkeiten und Unterschiede zwischen oberflächlichem und tiefem rnen untersuchen und die einzigartigen Eigenschaften jedes Ansatzes hervorheben und wie sie in realen Szenarien angewendet werden. Im Mittelpunkt des Buches stehen praktische Aspekte des flachen und tiefen rnens, die Schritt für Schritt Anleitungen zur Umsetzung dieser Methoden in eigene Projekte geben. Wir decken eine Reihe von Themen ab, von der Datenaufbereitung und Modellauswahl bis hin zu Training und Evaluation, und bieten Tipps und Tricks, um optimale Ergebnisse zu erzielen.
''
Shallow arning vs Deep arning Makine Öğrenimi Çözümleri İçin Pratik Bir Rehber Bu kitapta, yapay zekada devrim yaratan makine öğrenimine iki temel yaklaşım olan yüzey öğrenimi ve derin öğrenme arasındaki farkları araştırıyoruz. Her bir yaklaşımın güçlü ve zayıf yönlerini, uygulamalarını, faydalarını ve sınırlamalarını tartışıyoruz. Ayrıca, son gelişmeler ve gelecekteki eğilimler de dahil olmak üzere alanın mevcut durumunu inceliyoruz ve özel ihtiyaçlarınız için doğru yaklaşımı nasıl seçeceğiniz konusunda pratik rehberlik sağlıyoruz. İster deneyimli bir uygulayıcı olun, ister yeni başlayın, bu kılavuz makine öğreniminin karmaşık dünyasında gezinmenize ve projeleriniz hakkında bilinçli kararlar vermenize yardımcı olacaktır. Kitap, "yüzey öğrenme've" derin öğrenme "terimlerini tanımlayarak, her bir yaklaşımla ilişkili temel kavram ve teknikleri açıklayarak başlar. Sonra bu yöntemlerin tarihine dalıyoruz, zaman içindeki gelişimlerini ve evrimlerini izliyoruz. Daha sonra, yüzey ve derin öğrenme arasındaki benzerliklere ve farklılıklara bakıyoruz, her bir yaklaşımın benzersiz özelliklerini ve gerçek dünya senaryolarında nasıl uygulandıklarını vurguluyoruz. Kitap, sığ ve derin öğrenmenin pratik yönlerine dayanıyor ve bu yöntemleri kendi projelerinizde nasıl uygulayacağınıza dair adım adım talimatlar veriyor. Veri hazırlama ve model seçiminden eğitim ve değerlendirmeye, optimum sonuçlar için tavsiye ve öneriler sunmaya kadar bir dizi konuyu kapsıyoruz.
التعلم الضحل مقابل التعلم العميق دليل عملي لحلول التعلم الآلي في هذا الكتاب، نستكشف الاختلافات بين التعلم السطحي والتعلم العميق، وهما نهجان أساسيان للتعلم الآلي أحدثا ثورة في الذكاء الاصطناعي. نتعمق في نقاط القوة والضعف في كل نهج، ونناقش تطبيقه وفوائده وقيوده. كما ندرس الوضع الحالي للميدان، بما في ذلك التطورات الأخيرة والاتجاهات المستقبلية، ونقدم إرشادات عملية حول كيفية اختيار النهج الصحيح لتلبية احتياجاتك المحددة. سواء كنت ممارسًا متمرسًا أو بدأت للتو، سيساعدك هذا الدليل على التنقل في عالم التعلم الآلي المعقد واتخاذ قرارات مستنيرة بشأن مشاريعك. يبدأ الكتاب بتعريف مصطلحي «التعلم السطحي» و «التعلم العميق»، موضحًا المفاهيم والتقنيات الرئيسية المرتبطة بكل نهج. ثم نغوص في تاريخ هذه الأساليب، ونتتبع تطورها وتطورها عبر الزمن. بعد ذلك، ننظر إلى أوجه التشابه والاختلاف بين التعلم السطحي والتعلم العميق، مع تسليط الضوء على الخصائص الفريدة لكل نهج وكيفية تطبيقها في سيناريوهات العالم الحقيقي. يعتمد الكتاب على الجوانب العملية للتعلم الضحل والعميق، مما يعطي تعليمات خطوة بخطوة حول كيفية تنفيذ هذه الأساليب في مشاريعك الخاصة. نحن نغطي مجموعة من الموضوعات، من إعداد البيانات واختيار النماذج إلى التدريب والتقييم، وتقديم المشورة والتوصيات لتحقيق النتائج المثلى.
Shallow arning vs Deep Arning實用機器學習解決方案指南本書探討了表面學習與深度學習之間的差異,這是機器學習的兩種基本方法,徹底改變了人工智能領域。我們將深入探討每種方法的優缺點,討論它們的應用、優點和局限性。我們還在審查這一領域的現狀,包括最近的成就和未來的趨勢,並就如何選擇適當的方法來滿足你們的具體需要提供切實可行的指導。無論您是經驗豐富的從業人員還是剛開始的從業人員,本指南都將幫助您駕馭復雜的機器學習世界,並對您的項目做出明智的決定。該書首先定義了「表面學習」和「深度學習」術語,解釋了與每種方法相關的關鍵概念和技術。然後我們深入研究這些技術的歷史,追溯它們的發展和時間演變。然後,我們通過強調每種方法的獨特特征以及它們在現實世界中的應用方式,來研究表面學習和深度學習之間的相似性和差異。本書的核心是淺層和深層學習的實際方面,為將這些技術引入自己的項目提供了逐步指導。我們涵蓋了一系列主題,從數據準備和模型選擇到學習和評估,為實現最佳結果提供建議和指導。

You may also be interested in:

Facilitating the Integration of Learning: Five Research-Based Practices to Help College Students Connect Learning Across Disciplines and Lived Experience
Learning Genetic Algorithms with Python Empower the Performance of Machine Learning and AI Models with the Capabilities of a Powerful Search Algorithm
Machine Learning. Supervised Learning Techniques and Tools Nonlinear Models Exercises with R, SAS, STATA, EVIEWS and SPSS
Transfer Learning for Multiagent Reinforcement Learning Systems
Machine Learning in Elixir Learning to Learn with Nx and Axon
Machine Learning in Elixir Learning to Learn with Nx and Axon
Deep Reinforcement Learning with Python RLHF for Chatbots and Large Language Models, 2nd Edition
Deep Reinforcement Learning with Python RLHF for Chatbots and Large Language Models, 2nd Edition
Pro Deep Learning with TensorFlow 2.0 A Mathematical Approach to Advanced Artificial Intelligence in Python, Second Edition
Applied Deep Learning Design and implement your own Neural Networks to solve real-world problems
Artificial Intelligence for Scientific Discoveries: Extracting Physical Concepts from Experimental Data Using Deep Learning
Deep Learning Applications and Intelligent Decision Making in Engineering (Advances in Computational Intelligence and Robotics)
Pro Deep Learning with TensorFlow 2.0 A Mathematical Approach to Advanced Artificial Intelligence in Python, Second Edition
Machine Learning: Fundamental Algorithms for Supervised and Unsupervised Learning With Real-World Applications (Advanced Data Analytics Book 1)
Deep Learning for Time Series Cookbook: Use PyTorch and Python recipes for forecasting, classification, and anomaly detection
Explainable AI: Interpreting, Explaining and Visualizing Deep Learning (Lecture Notes in Computer Science Book 11700)
Deep Learning - Das umfassende Handbuch Grundlagen, aktuelle Verfahren und Algorithmen, neue Forschungsansatze
Practical Computer Vision Applications Using Deep Learning with CNNs: With Detailed Examples in Python Using TensorFlow and Kivy
Future-Focused Learning: Ten Essential Shifts of Everyday Practice (Changing Teaching Practices to Support Authentic Learning for the 21st Century)
Teachers Learning Together: Creating Learning Communities
Learning to Love (Learning to Duet Book 1)
Sentiment Analysis and Deep Learning: Proceedings of ICSADL 2022 (Advances in Intelligent Systems and Computing Book 1432)
Trends in Deep Learning Methodologies Algorithms, Applications, and Systems (Hybrid Computational Intelligence for Pattern Analysis and Understanding)
Real-world Learning Framework for Secondary Schools: Digital Tools and Practical Strategies for Successful Implementation - bring about deeper and self-directed learning in students
Professional Learning Communities at Work(R)and High-Reliability Schools: Cultures of Continuous Learning (Ensure a viable and guaranteed curriculum) (Leading Edge Book 11)
Deep Learning in Medical Image Analysis: Recent Advances and Future Trends (Artificial Intelligence in Smart Healthcare Systems)
Hands-On Natural Language Processing with PyTorch 1.x: Build smart, AI-driven linguistic applications using deep learning and NLP techniques
Learning in the Age of Digital and Green Transition: Proceedings of the 25th International Conference on Interactive Collaborative Learning (ICL2022), … (Lecture Notes in Networks and Systems, 6
Machine Learning for Beginners An Introductory Guide to Learn and Understand Artificial Intelligence, Neural Networks and Machine Learning
Dynamics of a Social Language Learning Community: Beliefs, Membership and Identity (Psychology of Language Learning and Teaching, 9) (Volume 9)
Machine Learning in Production: Master the art of delivering robust Machine Learning solutions with MLOps (English Edition)
Agricultural Informatics Automation Using the IoT and Machine Learning (Advances in Learning Analytics for Intelligent Cloud-IoT Systems)
Machine Learning With Python 3 books in 1 Hands-On Learning for Beginners+An in-Depth Guide Beyond the Basics+A Practical Guide for Experts
Building Machine Learning Systems Using Python Practice to Train Predictive Models and Analyze Machine Learning Results
Machine Learning for Business The Ultimate Artificial Intelligence & Machine Learning for Managers, Team Leaders and Entrepreneurs
Learning Google Cloud Vertex AI: Build, deploy, and manage machine learning models with Vertex AI (English Edition)
Applied Machine Learning and High-Performance Computing on AWS: Accelerate the development of machine learning applications following architectural best practices
Serverless Machine Learning with Amazon Redshift ML: Create, train, and deploy machine learning models using familiar SQL commands
Lifelong Learning, the Arts and Community Cultural Engagement in the contemporary university: International Perspectives (Universities and Lifelong Learning MUP)
Teacher Education in Computer-Assisted Language Learning: A Sociocultural and Linguistic Perspective (Advances in Digital Language Learning and Teaching)