BOOKS - The Comprehensive Guide to Machine Learning Algorithms and Techniques
The Comprehensive Guide to Machine Learning Algorithms and Techniques - Mohammed M. Ahmed 2024 EPUB Independently published BOOKS
ECO~14 kg CO²

1 TON

Views
93769

Telegram
 
The Comprehensive Guide to Machine Learning Algorithms and Techniques
Author: Mohammed M. Ahmed
Year: 2024
Pages: 240
Format: EPUB
File size: 11.4 MB
Language: ENG



Pay with Telegram STARS
The Comprehensive Guide to Machine Learning Algorithms and Techniques In today's fast-paced world, machine learning has become an integral part of our lives. From virtual assistants like Siri and Alexa to self-driving cars and medical diagnosis, machine learning algorithms are transforming how we live and work. However, understanding these complex techniques can be challenging, especially for those without a technical background. This comprehensive guide provides a step-by-step approach to help you master machine learning concepts and techniques, from basic linear regression to deep neural networks. The first section of this book covers the fundamental principles of machine learning, including supervised and unsupervised learning, data preprocessing, feature selection, and model evaluation. It also discusses the importance of data quality and exploration, as well as common pitfalls such as overfitting and underfitting. The second section delves into various machine learning algorithms, including decision trees, random forests, support vector machines (SVMs), k-nearest neighbors (k-NN), and neural networks.
Всеобъемлющее руководство по алгоритмам и методам машинного обучения В современном быстро развивающемся мире машинное обучение стало неотъемлемой частью нашей жизни. От виртуальных помощников, таких как ri и Alexa, до самоуправляемых автомобилей и медицинской диагностики, алгоритмы машинного обучения трансформируют то, как мы живем и работаем. Однако понимание этих сложных методов может быть сложной задачей, особенно для тех, кто не имеет технического образования. Это всеобъемлющее руководство предоставляет пошаговый подход, который поможет вам освоить концепции и методы машинного обучения, от базовой линейной регрессии до глубоких нейронных сетей. Первый раздел этой книги охватывает фундаментальные принципы машинного обучения, включая обучение с учителем и без учителя, предварительную обработку данных, выбор признаков и оценку модели. В нем также обсуждается важность качества данных и их изучения, а также общие подводные камни, такие как переобучение и недообучение. Второй раздел углубляется в различные алгоритмы машинного обучения, включая деревья решений, случайные леса, машины опорных векторов (SVM), k-ближайших соседей (k-NN) и нейронные сети.
Guide complet des algorithmes et des méthodes d'apprentissage automatique Dans le monde en évolution rapide d'aujourd'hui, l'apprentissage automatique est devenu une partie intégrante de nos vies. Des assistants virtuels comme ri et Alexa aux voitures autonomes et aux diagnostics médicaux, les algorithmes d'apprentissage automatique transforment notre façon de vivre et de travailler. Cependant, il peut être difficile de comprendre ces techniques complexes, en particulier pour ceux qui n'ont pas de formation technique. Ce guide complet fournit une approche étape par étape qui vous aidera à maîtriser les concepts et les méthodes d'apprentissage automatique, de la régression linéaire de base aux réseaux neuronaux profonds. La première partie de ce livre couvre les principes fondamentaux de l'apprentissage automatique, y compris l'apprentissage avec et sans professeur, le prétraitement des données, le choix des caractéristiques et l'évaluation du modèle. Il traite également de l'importance de la qualité des données et de leur étude, ainsi que des pièges communs tels que la rééducation et le sous-enseignement. La deuxième section est approfondie dans divers algorithmes d'apprentissage automatique, y compris les arbres de décision, les forêts aléatoires, les machines de vecteurs de référence (SVM), les voisins k-proches (k-NN) et les réseaux neuronaux.
Guía completa de algoritmos y técnicas de aprendizaje automático En el mundo en rápido desarrollo de hoy, el aprendizaje automático se ha convertido en una parte integral de nuestras vidas. Desde asistentes virtuales como ri y Alexa hasta vehículos autogestionados y diagnósticos médicos, los algoritmos de aprendizaje automático transforman la forma en que vivimos y trabajamos. n embargo, comprender estos métodos complejos puede ser una tarea difícil, especialmente para aquellos que carecen de educación técnica. Esta guía integral proporciona un enfoque paso a paso que le ayudará a dominar los conceptos y técnicas de aprendizaje automático, desde la regresión lineal básica hasta las redes neuronales profundas. La primera sección de este libro abarca los principios fundamentales del aprendizaje automático, incluyendo el aprendizaje con y sin profesor, el procesamiento previo de datos, la selección de características y la evaluación del modelo. También se discute la importancia de la calidad de los datos y su estudio, así como los escollos comunes como la re-enseñanza y la falta de comunicación. La segunda sección profundiza en diferentes algoritmos de aprendizaje automático, incluyendo árboles de decisión, bosques aleatorios, máquinas de vectores de referencia (SVM), vecinos k-cercanos (k-NN) y redes neuronales.
Guida completa agli algoritmi e alle tecniche di apprendimento automatico In un mondo in continua evoluzione, l'apprendimento automatico è diventato parte integrante della nostra vita. Dagli assistenti virtuali come ri e Alexa alle auto autosufficienti e alla diagnosi medica, gli algoritmi di apprendimento automatico trasformano il modo in cui viviamo e lavoriamo. Ma comprendere queste tecniche complesse può essere difficile, soprattutto per coloro che non hanno un'istruzione tecnica. Questa guida completa fornisce un approccio passo passo che vi aiuterà a imparare i concetti e le tecniche di apprendimento automatico, dalla regressione lineare di base alle reti neurali profonde. La prima sezione di questo libro comprende i principi fondamentali dell'apprendimento automatico, tra cui l'apprendimento con e senza insegnante, l'elaborazione preliminare dei dati, la scelta dei segni e la valutazione del modello. discute anche dell'importanza della qualità dei dati e del loro studio, nonché delle pietre sottomarine comuni, come la riqualificazione e il malfunzionamento. La seconda sezione viene approfondita in diversi algoritmi di apprendimento automatico, tra cui alberi di soluzioni, foreste casuali, vettori di supporto (SVM), k-vicini (k-NN) e reti neurali.
Umfassender itfaden zu Algorithmen und Methoden des maschinellen rnens In der heutigen schnelllebigen Welt ist maschinelles rnen zu einem festen Bestandteil unseres bens geworden. Von virtuellen Assistenten wie ri und Alexa bis hin zu selbstfahrenden Autos und medizinischer Diagnose verändern Algorithmen für maschinelles rnen die Art und Weise, wie wir leben und arbeiten. Das Verständnis dieser komplexen Techniken kann jedoch eine Herausforderung sein, insbesondere für diejenigen, die keinen technischen Hintergrund haben. Dieser umfassende itfaden bietet einen Schritt-für-Schritt-Ansatz, der Ihnen hilft, die Konzepte und Techniken des maschinellen rnens von der grundlegenden linearen Regression bis hin zu tiefen neuronalen Netzwerken zu beherrschen. Der erste Abschnitt dieses Buches behandelt die Grundprinzipien des maschinellen rnens, einschließlich des rnens mit und ohne hrer, der Datenvorverarbeitung, der Merkmalsauswahl und der Modellbewertung. Es diskutiert auch die Bedeutung der Qualität von Daten und deren Studium sowie gemeinsame Fallstricke wie Umschulung und Nicht-rnen. Der zweite Abschnitt befasst sich mit verschiedenen Algorithmen für maschinelles rnen, einschließlich Entscheidungsbäumen, Zufallsforsten, Support Vector Machines (SVMs), k-Nearest Neighbors (k-NNs) und neuronalen Netzwerken.
''
Makine Öğrenimi Algoritmaları ve Yöntemleri için Kapsamlı Kılavuz Günümüzün hızlı dünyasında, makine öğrenimi hayatımızın ayrılmaz bir parçası haline geldi. Ri ve Alexa gibi sanal asistanlardan kendi kendini süren arabalara ve tıbbi teşhislere kadar, makine öğrenme algoritmaları yaşama ve çalışma şeklimizi dönüştürüyor. Bununla birlikte, bu karmaşık yöntemleri anlamak, özellikle teknik bir geçmişe sahip olmayanlar için zor olabilir. Bu kapsamlı kılavuz, temel doğrusal regresyondan derin sinir ağlarına kadar makine öğrenimi kavram ve tekniklerine hakim olmanıza yardımcı olacak adım adım bir yaklaşım sunar. Bu kitabın ilk bölümü, denetimli ve denetimsiz öğrenme, veri ön işleme, özellik seçimi ve model değerlendirmesi dahil olmak üzere makine öğreniminin temel ilkelerini kapsar. Ayrıca, veri kalitesi ve veri araştırmasının önemini ve yeniden eğitim ve yetersiz eğitim gibi ortak tuzakları tartışmaktadır. İkinci bölüm, karar ağaçları, rastgele ormanlar, destek vektör makineleri (SVM'ler), k-en yakın komşular (k-NN'ler) ve sinir ağları dahil olmak üzere çeşitli makine öğrenme algoritmalarına girer.
دليل شامل لخوارزميات وأساليب التعلم الآلي في عالم اليوم سريع الخطى، أصبح التعلم الآلي جزءًا لا يتجزأ من حياتنا. من المساعدين الافتراضيين مثل ri و Alexa إلى السيارات ذاتية القيادة والتشخيصات الطبية، تعمل خوارزميات التعلم الآلي على تغيير الطريقة التي نعيش ونعمل بها. ومع ذلك، قد يكون فهم هذه الأساليب المعقدة أمرًا صعبًا، خاصة بالنسبة لأولئك الذين ليس لديهم خلفية فنية. يوفر هذا الدليل الشامل نهجًا تدريجيًا لمساعدتك على إتقان مفاهيم وتقنيات التعلم الآلي، من الانحدار الخطي الأساسي إلى الشبكات العصبية العميقة. يغطي القسم الأول من هذا الكتاب المبادئ الأساسية للتعلم الآلي، بما في ذلك التعلم الخاضع للإشراف وغير الخاضع للإشراف، ومعالجة البيانات مسبقًا، واختيار الميزات، وتقييم النموذج. كما يناقش أهمية جودة البيانات واستكشاف البيانات، والمزالق الشائعة مثل إعادة التدريب ونقص التدريب. يتعمق القسم الثاني في خوارزميات التعلم الآلي المختلفة، بما في ذلك أشجار القرار والغابات العشوائية وآلات ناقلات الدعم (SVMs) وأقرب الجيران (k-NNs) والشبكات العصبية.
機器學習算法和方法的綜合指南在當今快速發展的世界中,機器學習已成為我們生活中不可或缺的一部分。從像ri和Alexa這樣的虛擬助手到自動駕駛汽車和醫療診斷,機器學習算法正在改變我們的生活和工作方式。但是,了解這些復雜的技術可能具有挑戰性,特別是對於那些沒有技術教育的人。這本全面的指南提供了一種逐步的方法,可以幫助您掌握機器學習的概念和方法,從基本的線性回歸到深層神經網絡。本書的第一部分涵蓋了機器學習的基本原理,包括與老師和非老師一起學習,數據預處理,特征選擇和模型評估。它還討論了數據質量和數據研究的重要性,以及再教育和缺乏教育等共同陷阱。第二部分深入研究了各種機器學習算法,包括決策樹,隨機森林,參考向量機(SVM),k最接近的鄰居(k-NN)和神經網絡。

You may also be interested in:

Practical Guide to Machine Learning, NLP, and Generative AI Libraries, Algorithms, and Applications
Machine Learning, or, An Unofficial Guide to Georgia Institute of Technology|s CS764
How Machine Learning is Innovating Today|s World A Concise Technical Guide
AI and ML for Coders in PyTorch A Coder’s Guide to Generative AI and Machine Learning (Early Release)
How Machine Learning is Innovating Today|s World A Concise Technical Guide
Interpretable Machine Learning A Guide for Making Black Box Models Explainable
Machine Learning An Introduction for Beginners, User Guide to Build Intelligent Systems
Ultimate Java for Data Analytics and Machine Learning: Unlock Java|s Ecosystem for Data Analysis and Machine Learning Using WEKA, JavaML, JFreeChart, and Deeplearning4j (English Edition)
Ultimate Machine Learning with Scikit-Learn Unleash the Power of Scikit-Learn and Python to Build Cutting-Edge Predictive Modeling Applications and Unlock Deeper Insights Into Machine Learning
Ultimate Machine Learning with Scikit-Learn Unleash the Power of Scikit-Learn and Python to Build Cutting-Edge Predictive Modeling Applications and Unlock Deeper Insights Into Machine Learning
Ultimate Machine Learning with Scikit-Learn Unleash the Power of Scikit-Learn and Python to Build Cutting-Edge Predictive Modeling Applications and Unlock Deeper Insights Into Machine Learning
Ultimate Java for Data Analytics and Machine Learning Unlock Java|s Ecosystem for Data Analysis and Machine Learning Using WEKA, JavaML, JFreeChart, and Deeplearning4j
Ultimate Java for Data Analytics and Machine Learning Unlock Java|s Ecosystem for Data Analysis and Machine Learning Using WEKA, JavaML, JFreeChart, and Deeplearning4j
Python Machine Learning: Everything You Should Know About Python Machine Learning Including Scikit Learn, Numpy, PyTorch, Keras And Tensorflow With Step-By-Step Examples And PRACTICAL Exercises
Artificial Intelligence What You Need to Know About Machine Learning, Robotics, Deep Learning, Recommender Systems, Internet of Things, Neural Networks, Reinforcement Learning, and Our Future
Machine Learning Infrastructure and Best Practices for Software Engineers: Take your machine learning software from a prototype to a fully fledged software system
Ultimate Machine Learning with Scikit-Learn: Unleash the Power of Scikit-Learn and Python to Build Cutting-Edge Predictive Modeling Applications and Unlock … Into Machine Learning (English Editi
Cracking The Machine Learning Interview 225 Machine Learning Interview Questions with Solutions
Machine Learning in Python Hands on Machine Learning with Python Tools, Concepts and Techniques
Machine Learning with Python Advanced and Effective Strategies Using Machine Learning with Python Theories
Linux Fundamentals A Practical Guide for Data Scientists, Machine Learning Engineers, and IT Professionals
Evaluating Machine Learning Models A Beginner|s Guide to Key Concepts and Pitfalls
Multi-Criteria Decision-Making and Optimum Design with Machine Learning A Practical Guide
Machine Learning Upgrade A Data Scientist|s Guide to MLOps, LLMs, and ML Infrastructure
Official Google Cloud Certified Professional Machine Learning Engineer Study Guide
Machine Learning Upgrade A Data Scientist|s Guide to MLOps, LLMs, and ML Infrastructure
Python Machine Learning A Beginner|s Guide to Scikit-Learn A Hands-On Approach
Python Machine Learning A Beginner|s Guide to Scikit-Learn A Hands-On Approach
Machine Learning for Trading, or, An Unofficial Guide to Georgia Institute of Technology|s CS764
Multi-Criteria Decision-Making and Optimum Design with Machine Learning A Practical Guide
Official Google Cloud Certified Professional Machine Learning Engineer Study Guide
Mastering Classification Algorithms for Machine Learning: Learn how to apply Classification algorithms for effective Machine Learning solutions (English Edition)
Data Science from Scratch Want to become a Data Scientist? This guide for beginners will walk you through the world of Data Science, Big Data, Machine Learning and Deep Learning
Google BigQuery The Definitive Guide Data Warehousing, Analytics, and Machine Learning at Scale, First Edition
Interpreting Machine Learning Models With SHAP A Guide With Python Examples And Theory On Shapley Values
GoLang for Machine Learning A Hands-on-Guide to Building Efficient, Smart and Scalable ML Models with Go Programming
Machine Learning Interview Guide Job-oriented questions and answers for data scientists and engineers
Machine Learning with Dynamics 365 and Power Platform The Ultimate Guide to Apply Predictive Analytics
GoLang for Machine Learning: A Hands-on-Guide to Building Efficient, Smart and Scalable ML Models with Go Programming
Artificial Intelligence and Machine Learning for Business A No-Nonsense Guide to Data Driven Technologies, Third Edition