BOOKS - Google JAX Cookbook Perform Machine Learning and numerical computing with com...
Google JAX Cookbook Perform Machine Learning and numerical computing with combined capabilities of TensorFlow and NumPy - Zephyr Quent 2024 PDF | AZW3 | EPUB | MOBI GitforGits BOOKS
ECO~15 kg CO²

1 TON

Views
16846

Telegram
 
Google JAX Cookbook Perform Machine Learning and numerical computing with combined capabilities of TensorFlow and NumPy
Author: Zephyr Quent
Year: 2024
Pages: 333
Format: PDF | AZW3 | EPUB | MOBI
File size: 10.1 MB
Language: ENG



Pay with Telegram STARS
The Google JAX Cookbook is a comprehensive guide to using the JAX library, which combines the strengths of TensorFlow and NumPy to perform machine learning and numerical computing tasks. The book covers a wide range of topics, from basic linear algebra to advanced deep learning techniques, and provides practical examples and exercises to help readers master the concepts presented. The book begins by introducing the basics of linear algebra, including vector operations, matrix multiplication, and eigenvalue decomposition. It then delves into more advanced topics such as neural networks, convolutional neural networks, and recurrent neural networks. The authors also cover topics such as transfer learning, data preprocessing, and model evaluation, providing readers with a solid foundation in machine learning and numerical computing. One of the unique aspects of this book is its focus on combining the strengths of TensorFlow and NumPy. TensorFlow is a powerful deep learning framework that excels at building complex models, while NumPy is a versatile numerical computing library that provides efficient array-based operations. By combining these two libraries, readers can leverage the best of both worlds and develop robust and efficient machine learning models. Throughout the book, the authors provide numerous examples and exercises to help readers reinforce their understanding of the concepts presented. These include practical applications such as image classification, natural language processing, and recommendation systems. The book also includes case studies that demonstrate how JAX can be used in real-world scenarios, such as predicting stock prices or analyzing medical imaging data. In addition to its technical content, the book also touches on the broader implications of technology evolution and the need for a personal paradigm for perceiving the technological process of developing modern knowledge.
Google JAX Cookbook - это всеобъемлющее руководство по использованию библиотеки JAX, которая сочетает в себе сильные стороны TensorFlow и NumPy для выполнения задач машинного обучения и численных вычислений. Книга охватывает широкий круг тем, от базовой линейной алгебры до передовых техник глубокого обучения, и содержит практические примеры и упражнения, помогающие читателям освоить представленные концепции. Книга начинается с введения основ линейной алгебры, включая векторные операции, умножение матриц и разложение по собственным значениям. Затем он углубляется в более продвинутые темы, такие как нейронные сети, сверточные нейронные сети и рекуррентные нейронные сети. Авторы также охватывают такие темы, как обучение передаче, предварительная обработка данных и оценка моделей, предоставляя читателям прочную основу для машинного обучения и численных вычислений. Одним из уникальных аспектов этой книги является ее направленность на объединение сильных сторон TensorFlow и NumPy. TensorFlow - это мощный фреймворк для глубокого обучения, который отлично подходит для построения сложных моделей, а NumPy - универсальная библиотека числовых вычислений, обеспечивающая эффективные операции на основе массивов. Комбинируя эти две библиотеки, читатели могут использовать лучшее из обоих миров и разрабатывать надежные и эффективные модели машинного обучения. На протяжении всей книги авторы приводят многочисленные примеры и упражнения, чтобы помочь читателям укрепить свое понимание представленных концепций. К ним относятся практические приложения, такие как классификация изображений, обработка естественного языка и системы рекомендаций. Книга также включает тематические исследования, которые демонстрируют, как JAX можно использовать в реальных сценариях, таких как прогнозирование цен на акции или анализ данных медицинской визуализации. Помимо технического содержания, в книге также затрагиваются более широкие последствия эволюции технологий и необходимость персональной парадигмы восприятия технологического процесса развития современных знаний.
''

You may also be interested in:

Ultimate Machine Learning with ML.NET: Build, Optimize, and Deploy Powerful Machine Learning Models for Data-Driven Insights with ML.NET, Azure Functions, and Web API (English Edition)
Python Machine Learning for Beginners: Unlocking the Power of Data. A Beginner|s Guide to Machine Learning with Python
Python Machine Learning for Beginners Unlocking the Power of Data. A Beginner|s Guide to Machine Learning with Python
Python Machine Learning for Beginners Unlocking the Power of Data. A Beginner|s Guide to Machine Learning with Python
The Art of Machine Learning A Hands-On Guide to Machine Learning with R
The Art of Machine Learning A Hands-On Guide to Machine Learning with R
The Art of Machine Learning: A Hands-On Guide to Machine Learning with R
Machine Learning Q and AI: 30 Essential Questions and Answers on Machine Learning and AI
Machine Learning Q and AI 30 Essential Questions and Answers on Machine Learning and AI
Machine Learning Q and AI 30 Essential Questions and Answers on Machine Learning and AI
Machine Learning with Rust A practical attempt to explore Rust and its libraries across popular Machine Learning techniques
Machine Learning with Python Comprehensive Beginner’s Guide to Machine Learning in Python with Exercises and Case Studies
Machine Learning with Rust: A practical attempt to explore Rust and its libraries across popular machine learning techniques
Practical Automated Machine Learning on Azure Using Azure Machine Learning to Quickly Build AI Solutions, First Edition
Python Machine Learning: Leveraging Python for Implementing Machine Learning Algorithms and Applications (2023 Guide)
Google Daydream VR Cookbook Building Games and Apps with Google Daydream and Unity
Machine Learning for Finance Beginner|s guide to explore machine learning in banking and finance
Machine Learning A Comprehensive, Step-by-Step Guide to Intermediate Concepts and Techniques in Machine Learning
Image Processing and Machine Learning, Volume 2 Advanced Topics in Image Analysis and Machine Learning
The Definitive Guide to Machine Learning Operations in AWS Machine Learning Scalability and Optimization with AWS
Machine Learning With Python A Comprehensive Beginners Guide to Learn the Realms of Machine Learning with Python
Shallow Learning vs. Deep Learning A Practical Guide for Machine Learning Solutions
Shallow Learning vs. Deep Learning A Practical Guide for Machine Learning Solutions
Ultimate Java for Data Analytics and Machine Learning: Unlock Java|s Ecosystem for Data Analysis and Machine Learning Using WEKA, JavaML, JFreeChart, and Deeplearning4j (English Edition)
Ultimate Machine Learning with Scikit-Learn Unleash the Power of Scikit-Learn and Python to Build Cutting-Edge Predictive Modeling Applications and Unlock Deeper Insights Into Machine Learning
Ultimate Machine Learning with Scikit-Learn Unleash the Power of Scikit-Learn and Python to Build Cutting-Edge Predictive Modeling Applications and Unlock Deeper Insights Into Machine Learning
Machine Learning For Beginners Step-by-Step Guide to Machine Learning, a Beginners Approach to Artificial Intelligence, Big Data, Basic Python Algorithms, and Techniques for Business (Practical Exampl
Ultimate Machine Learning with Scikit-Learn Unleash the Power of Scikit-Learn and Python to Build Cutting-Edge Predictive Modeling Applications and Unlock Deeper Insights Into Machine Learning
Ultimate Java for Data Analytics and Machine Learning Unlock Java|s Ecosystem for Data Analysis and Machine Learning Using WEKA, JavaML, JFreeChart, and Deeplearning4j
Ultimate Java for Data Analytics and Machine Learning Unlock Java|s Ecosystem for Data Analysis and Machine Learning Using WEKA, JavaML, JFreeChart, and Deeplearning4j
Python Machine Learning: Everything You Should Know About Python Machine Learning Including Scikit Learn, Numpy, PyTorch, Keras And Tensorflow With Step-By-Step Examples And PRACTICAL Exercises
Artificial Intelligence What You Need to Know About Machine Learning, Robotics, Deep Learning, Recommender Systems, Internet of Things, Neural Networks, Reinforcement Learning, and Our Future
Machine Learning Infrastructure and Best Practices for Software Engineers: Take your machine learning software from a prototype to a fully fledged software system
Ultimate Machine Learning with Scikit-Learn: Unleash the Power of Scikit-Learn and Python to Build Cutting-Edge Predictive Modeling Applications and Unlock … Into Machine Learning (English Editi
The Vegan Athlete|s Cookbook Protein-rich recipes to train, recover and perform
Cracking The Machine Learning Interview 225 Machine Learning Interview Questions with Solutions
Machine Learning with Python Advanced and Effective Strategies Using Machine Learning with Python Theories
Machine Learning Step-by-Step Guide To Implement Machine Learning Algorithms with Python
Machine Learning in Python Hands on Machine Learning with Python Tools, Concepts and Techniques
Machine Learning For Beginners A Comprehensive Beginners Guide To Machine Learning, No Experience Required!