BOOKS - Data Science and Risk Analytics in Finance and Insurance
Data Science and Risk Analytics in Finance and Insurance - Tze Leung Lai, Haipeng Xing 2025 PDF CRC Press BOOKS
ECO~18 kg CO²

1 TON

Views
80746

Telegram
 
Data Science and Risk Analytics in Finance and Insurance
Author: Tze Leung Lai, Haipeng Xing
Year: 2025
Pages: 464
Format: PDF
File size: 10.1 MB
Language: ENG



Pay with Telegram STARS
Book Description: Data Science and Risk Analytics in Finance and Insurance In today's fast-paced digital world, the ability to analyze and interpret vast amounts of data is crucial for success in the financial and insurance industries. Data science and risk analytics have become essential tools for businesses and organizations looking to make informed decisions and mitigate risks. This book provides a comprehensive overview of the latest statistical and data science methods for risk analytics in quantitative finance and insurance, as well as an introduction to four key areas in financial technology: Artificial Intelligence, blockchain, cloud computing, and big data analytics.
Наука о данных и аналитика рисков в финансах и страховании В современном быстро развивающемся цифровом мире способность анализировать и интерпретировать огромные объемы данных имеет решающее значение для успеха в финансовой и страховой отраслях. Наука о данных и аналитика рисков стали важными инструментами для предприятий и организаций, которые хотят принимать обоснованные решения и снижать риски. В этой книге представлен всесторонний обзор новейших статистических и дата-научных методов для аналитики рисков в количественных финансах и страховании, а также введение в четыре ключевых направления в финансовых технологиях: искусственный интеллект, блокчейн, облачные вычисления и аналитика больших данных.
Science des données et analyse des risques dans la finance et l'assurance Dans le monde numérique en évolution rapide d'aujourd'hui, la capacité d'analyser et d'interpréter d'énormes quantités de données est essentielle au succès dans les secteurs de la finance et de l'assurance. La science des données et l'analyse des risques sont devenues des outils importants pour les entreprises et les organisations qui veulent prendre des décisions éclairées et réduire les risques. Ce livre présente un aperçu complet des dernières méthodes statistiques et data-scientifiques pour l'analyse des risques dans la finance quantitative et l'assurance, ainsi qu'une introduction à quatre domaines clés dans les technologies financières : intelligence artificielle, blockchain, cloud computing et big data analysis.
Ciencia de los Datos y Análisis de Riesgos en Finanzas y Seguros En el mundo digital en rápida evolución de hoy, la capacidad de analizar e interpretar enormes cantidades de datos es crucial para el éxito de las industrias financiera y de seguros. La ciencia de los datos y el análisis de riesgos se han convertido en herramientas importantes para las empresas y organizaciones que desean tomar decisiones informadas y reducir los riesgos. Este libro ofrece una amplia visión general de las últimas técnicas estadísticas y de datos para el análisis de riesgos en finanzas y seguros cuantitativos, así como una introducción a cuatro áreas clave en tecnología financiera: inteligencia artificial, blockchain, computación en la nube y análisis de big data.
Scienza dei dati e analisi dei rischi in finanza e assicurazione In un mondo digitale in continua evoluzione, la capacità di analizzare e interpretare enormi quantità di dati è fondamentale per il successo nel settore finanziario e assicurativo. La scienza dei dati e l'analisi dei rischi sono diventati strumenti importanti per le aziende e le organizzazioni che vogliono prendere decisioni ragionevoli e ridurre i rischi. Questo libro fornisce una panoramica completa delle più recenti tecniche statistiche e data-science per gli analisti dei rischi in termini di finanza e assicurazioni quantitative, nonché l'introduzione di quattro ambiti chiave nelle tecnologie finanziarie: intelligenza artificiale, blockchain, cloud computing e analisi dei big data.
Data Science und Risikoanalyse in Finanzen und Versicherungen In der heutigen schnelllebigen digitalen Welt ist die Fähigkeit, riesige Datenmengen zu analysieren und zu interpretieren, entscheidend für den Erfolg in der Finanz- und Versicherungsbranche. Data Science und Risikoanalyse sind zu wichtigen Werkzeugen für Unternehmen und Organisationen geworden, die fundierte Entscheidungen treffen und Risiken reduzieren möchten. Dieses Buch bietet einen umfassenden Überblick über die neuesten statistischen und datenwissenschaftlichen Methoden für die Risikoanalyse in quantitativen Finanzen und Versicherungen sowie eine Einführung in vier Schlüsselbereiche der Finanztechnologie: künstliche Intelligenz, Blockchain, Cloud Computing und Big Data Analytics.
Data Science and Risk Analytics w finansach i ubezpieczeniach W dzisiejszym szybko rozwijającym się świecie cyfrowym zdolność do analizy i interpretacji ogromnych ilości danych ma kluczowe znaczenie dla sukcesu w branży finansowej i ubezpieczeniowej. Nauka o danych i analiza ryzyka stały się ważnymi narzędziami dla przedsiębiorstw i organizacji, które chcą podejmować świadome decyzje i ograniczać ryzyko. Książka ta zawiera kompleksowy przegląd najnowszych metod statystycznych i naukowo-badawczych dotyczących analityki ryzyka w finansach ilościowych i ubezpieczeniach, a także wprowadzenie do czterech kluczowych obszarów technologii finansowych: sztucznej inteligencji, blockchain, chmury obliczeniowej i analizy dużych danych.
''
Finans ve gortada Veri Bilimi ve Risk Analitiği Günümüzün hızla gelişen dijital dünyasında, çok miktarda veriyi analiz etme ve yorumlama yeteneği, finans ve sigorta endüstrilerindeki başarı için kritik öneme sahiptir. Veri bilimi ve risk analitiği, bilinçli kararlar vermek ve riski azaltmak isteyen işletmeler ve kuruluşlar için önemli araçlar haline gelmiştir. Bu kitap, kantitatif finans ve sigortacılıkta risk analitiği için en son istatistiksel ve veri bilimi yöntemlerinin yanı sıra finansal teknolojideki dört temel alana giriş niteliğindedir: yapay zeka, blockchain, bulut bilişim ve büyük veri analizi.
علم البيانات وتحليلات المخاطر في التمويل والتأمين في عالم اليوم الرقمي سريع التطور، تعد القدرة على تحليل وتفسير كميات هائلة من البيانات أمرًا بالغ الأهمية للنجاح في الصناعات المالية والتأمينية. أصبحت علوم البيانات وتحليلات المخاطر أدوات مهمة للشركات والمنظمات التي ترغب في اتخاذ قرارات مستنيرة وتخفيف المخاطر. يقدم هذا الكتاب لمحة عامة شاملة عن أحدث الأساليب الإحصائية وعلوم البيانات لتحليلات المخاطر في التمويل الكمي والتأمين، بالإضافة إلى مقدمة لأربعة مجالات رئيسية في التكنولوجيا المالية: الذكاء الاصطناعي، و blockchain، والحوسبة السحابية، وتحليلات البيانات الضخمة.
在當今快速發展的數字世界中,分析和解釋大量數據的能力對於金融和保險業的成功至關重要。數據科學和風險分析已成為希望做出明智決策並降低風險的企業和組織的重要工具。本書全面概述了用於量化金融和保險風險分析的最新統計和數據科學方法,並介紹了金融技術的四個關鍵領域:人工智能,區塊鏈,雲計算和大數據分析。

You may also be interested in:

Cyber-Risk Informatics Engineering Evaluation with Data Science
Data Science for Decision Makers Using Analytics and Case Studies
Data Science for IoT Engineers A Systems Analytics Approach
Coding with Python The Ultimate Guide For Data Science, a Smart Way to Program With Python, Understand Data Analytics and Deep Learning Faster Computer Programming for Beginners (Book Python 3)
Marketing Analytics Optimize Your Business with Data Science in R, Python, and SQL
Web and Network Data Science Modeling Techniques in Predictive Analytics
Football Analytics with Python and R: Learning Data Science Through the Lens of Sports
Cybersecurity Analytics (Chapman & Hall/CRC Data Science Series)
Why Data Science Projects Fail The Harsh Realities of Implementing AI and Analytics, without the Hype
Introduction to NFL Analytics with R (Chapman and Hall CRC Data Science Series)
Quantitative Analysis for System Applications Data Science and Analytics Tools and Techniques
Why Data Science Projects Fail The Harsh Realities of Implementing AI and Analytics, without the Hype
Business Intelligence, Analytics, Data Science, and AI A Managerial Perspective, 5th Edition
Health Analytics with R Learning Data Science Using Examples from Healthcare and Direct-to-Consumer Genetics
Football Analytics with Python & R Learning Data Science Through the Lens of Sports (Final)
Football Analytics with Python & R Learning Data Science Through the Lens of Sports (Final)
No-Code Data Science Mastering Advanced Analytics, Machine Learning, and Artificial Intelligence
No-Code Data Science Mastering Advanced Analytics, Machine Learning, and Artificial Intelligence
Data Analytics Principles, Tools, and Practices A Complete Guide for Advanced Data Analytics Using the Latest Trends, Tools
Advanced Data Analytics with AWS Explore Data Analysis Concepts in the Cloud to Gain Meaningful Insights and Build Robust Data Engineering Workflows Across Diverse Data Sources
Advanced Data Analytics with AWS Explore Data Analysis Concepts in the Cloud to Gain Meaningful Insights and Build Robust Data Engineering Workflows Across Diverse Data Sources
Product Analytics Applied Data Science Techniques for Actionable Consumer Insights (Rough Cuts)
Data Science from Scratch Want to become a Data Scientist? This guide for beginners will walk you through the world of Data Science, Big Data, Machine Learning and Deep Learning
Advanced Data Analytics with AWS: Explore Data Analysis Concepts in the Cloud to Gain Meaningful Insights and Build Robust Data Engineering Workflows Across Diverse Data Sources (English Edition)
Modern Data Analytics in Excel Using Power Query, Power Pivot, and More for Enhanced Data Analytics
Modern Data Analytics in Excel Using Power Query, Power Pivot, and More for Enhanced Data Analytics
Modern Data Analytics in Excel: Using Power Query, Power Pivot, and More for Enhanced Data Analytics
Big Data and Analytics The key concepts and practical applications of Big Data analytics
Data Analytics in the AWS Cloud: Building a Data Platform for BI and Predictive Analytics on AWS
Big Data and Analytics The key concepts and practical applications of Big Data analytics
Hands-On Data Preprocessing in Python: Learn how to effectively prepare data for successful data analytics
Python for Data Analytics A Beginners Guide for Learning Python Data Analytics from A-Z
Augmented Analytics: Enabling Analytics Transformation for Data-Informed Decisions
Augmented Analytics Enabling Analytics Transformation for Data-Informed Decisions (Final Release)
Augmented Analytics Enabling Analytics Transformation for Data-Informed Decisions (Final Release)
Augmented Analytics Enabling Analytics Transformation for Data-Informed Decisions (3rd Early Release)
Augmented Analytics Enabling Analytics Transformation for Data-Informed Decisions (3rd Early Release)
Augmented Analytics Enabling Analytics Transformation for Data-Informed Decisions (3rd Early Release)
Data Mining and Analytics in Healthcare Management: Applications and Tools (International Series in Operations Research and Management Science, 341)
Natural Language Processing in the Real World: Text Processing, Analytics, and Classification (Chapman and Hall CRC Data Science Series)