BOOKS - Generative AI and LLMs Natural Language Processing and Generative Adversarial...
Generative AI and LLMs Natural Language Processing and Generative Adversarial Networks - S. Balasubramaniam, Seifedine Kadry, A. Prasanth, Rajesh Kumar Dhanaraj 2024 EPUB | MOBI De Gruyter BOOKS
ECO~14 kg CO²

1 TON

Views
863033

 
Generative AI and LLMs Natural Language Processing and Generative Adversarial Networks
Author: S. Balasubramaniam, Seifedine Kadry, A. Prasanth, Rajesh Kumar Dhanaraj
Year: 2024
Pages: 289
Format: EPUB | MOBI
File size: 10.1 MB
Language: ENG



Book Description: Generative AI and LLMs: Natural Language Processing and Generative Adversarial Networks S. Balasubramaniam, Seifedine Kadry, A. Prasanth, Rajesh Kumar Dhanaraj 2024 289 De Gruyter Summary: In this groundbreaking book, we delve into the fascinating world of Generative Artificial Intelligence (GAI) and Large Language Models (LLM), exploring their evolution, capabilities, and challenges. As we navigate the rapidly evolving landscape of artificial intelligence, it is crucial to understand the development and potential of GAI and LLM to redefine innovation and productivity. However, the integration of these technologies in corporate operations may pose significant risks to data privacy, long-term competitiveness, and environmental sustainability. Introduction: Artificial Intelligence (AI) has come a long way since its inception, with machine learning algorithms driving the current era of innovation. Generative AI and LLMs are at the forefront of this revolution, leveraging pre-existing content to generate novel material. These unsupervised or semisupervised Machine Learning algorithms have the capacity to produce authentic and original content, with no constraints on the quantity of novelty they can generate.
Generative AI and LLMs: Natural Language Processing and Generative Adversarial Networks S. Balasubramaniam, Seifedine Kadry, A. Prasanth, Rajesh Kumar Dhanaraj 2024 289 De Gruyter Резюме: В этой новаторской книге мы углубляемся в увлекательный мир of Generative Artificial Intelligence (GAI) and Large Language Models (LLM), исследуя их эволюцию, возможности и проблемы. Поскольку мы ориентируемся в быстро развивающемся ландшафте искусственного интеллекта, очень важно понимать развитие и потенциал GAI и LLM для переопределения инноваций и производительности. Однако интеграция этих технологий в корпоративные операции может представлять значительные риски для конфиденциальности данных, долгосрочной конкурентоспособности и экологической устойчивости. Введение: Искусственный интеллект (ИИ) прошел долгий путь с момента своего зарождения, алгоритмы машинного обучения определяют нынешнюю эру инноваций. Генерирующие ИИ и LLM находятся на переднем крае этой революции, используя уже существующий контент для создания нового материала. Эти неконтролируемые или полууправляемые алгоритмы машинного обучения способны создавать аутентичный и оригинальный контент без ограничений на количество новизны, которую они могут генерировать.
Generative AI and LLMs: Natural Language Processing and Generative Adversary Networks S. Balasubramaniam, Seifedine Kadry, A. Prasanth, Rajesh Kumar Dhanaraj 2024 289 De Gruyter Resumen: En este libro pionero profundizamos en el fascinante mundo de la Inteligencia Artificial Generativa (GAI) y los Modelos de ngua Larga (LLM)), explorando su evolución, oportunidades y desafíos. A medida que nos centramos en un panorama de inteligencia artificial en rápida evolución, es muy importante comprender el desarrollo y el potencial de GAI y LLM para redefinir la innovación y el rendimiento. n embargo, la integración de estas tecnologías en las operaciones de las empresas puede suponer riesgos significativos para la privacidad de los datos, la competitividad a largo plazo y la sostenibilidad ambiental. Introducción: La inteligencia artificial (IA) ha recorrido un largo camino desde su origen, los algoritmos de aprendizaje automático definen la actual era de la innovación. La IA generadora y la LLM están a la vanguardia de esta revolución, utilizando contenidos preexistentes para crear nuevo material. Estos algoritmos de aprendizaje automático incontrolables o semi-controlables son capaces de crear contenidos auténticos y originales sin limitar la cantidad de novedad que pueden generar.
Generative AI and LLMs: Naturale Language Processing and Generative Adversarial Networks S. Balasubramaniam, Seifedine Kadry, A. Prasanth, Rajesh Kumar Dhanaraj 2024 289 De Gruyter Curriculum: In questo libro innovativo, stiamo approfondendo l'affascinante mondo della GAI (Generative Artistical Intelligence) e del Grand Language Models (LLM), esplorandone l'evoluzione, le opportunità e le sfide. Poiché ci concentriamo su un panorama in rapida evoluzione dell'intelligenza artificiale, è fondamentale comprendere lo sviluppo e il potenziale di GAI e LLM per ridefinire l'innovazione e la produttività. Tuttavia, l'integrazione di queste tecnologie nelle operazioni aziendali può comportare rischi significativi per la privacy dei dati, la competitività a lungo termine e la sostenibilità ambientale. Introduzione: l'intelligenza artificiale (IA) ha fatto molta strada dalla sua nascita, gli algoritmi di apprendimento automatico determinano l'era attuale dell'innovazione. I generatori di IA e LLM sono in prima linea in questa rivoluzione, utilizzando i contenuti esistenti per creare nuovo materiale. Questi algoritmi di apprendimento automatico non controllati o semideserti sono in grado di creare contenuti autentici e originali senza limitare la quantità di novità che possono generare.
''
Generative AIとLLM:自然言語処理とGenerative Adversarial Networks S。 Balasubramaniam、 Seifedine Kadry、 A。 Prasanth、 Rajesh Kumar Dhanaraj 2024 289 De Gruyter概要:この画期的な本では、GAI (Generative Artificial Intelligence)とLarge Language Models (LLM)の魅力的な世界を掘り下げ、その進化、可能性、課題を探ります。急速に進化するAI環境をナビゲートする際には、GAIとLLMの開発と可能性を理解し、イノベーションとパフォーマンスを再定義することが重要です。しかし、これらの技術を企業の業務に統合することは、データプライバシー、長期的な競争力、環境の持続可能性に大きなリスクをもたらす可能性があります。はじめに:人工知能(AI)は、機械学習アルゴリズムがイノベーションの現在の時代を定義して以来、長い道のりを歩んできました。AIとLLMの生成は、既存のコンテンツを使用して新しい素材を作成する、この革命の最前線にあります。これらの制御されていないまたは半制御の機械学習アルゴリズムは、生成可能な新規性の量を制限することなく、本物のオリジナルのコンテンツを生成することができます。

You may also be interested in:

Discontinuous Constituency (Natural Language Processing, 6)
Representation Learning for Natural Language Processing
Bayesian Analysis in Natural Language Processing, Second Edition
Practical Natural Language Processing (Early Release)
Natural Language Processing A Textbook With Python Implementation
Natural Language Processing (A Machine Learning Perspective)
Neural Network Methods in Natural Language Processing
Formal Analysis for Natural Language Processing: A Handbook
Representalion and Processing of Natural Language (German Edition)
Natural Language Processing A Textbook With Python Implementation
Natural Language Processing with Transformers (Early Release)
Machine Intelligence: Computer Vision and Natural Language Processing
Natural Language Processing and Information Retrieval Principles and Applications
Natural Language Processing in Action, Second Edition MEAP V09
Language and natural theology (Janua Linguarum. Series Minor, 47)
Machine Intelligence Computer Vision and Natural Language Processing
Deep Learning for Natural Language Processing A Gentle Introduction
The Transformer Architecture A Practical Guide to Natural Language Processing
Natural Language Processing and Information Retrieval Principles and Applications
Natural Language Processing with Spark NLP (Early Release)
The Transformer Architecture A Practical Guide to Natural Language Processing
Introduction to Natural Language Processing Concepts and Fundamentals for Beginners
Deep Learning for Natural Language Processing A Gentle Introduction
Natural Language Processing with Python and spaCy A Practical Introduction
Deep Learning for Natural Language Processing: A Gentle Introduction
Deep Learning for Natural Language Processing (MEAP Edition) +code
Natural Language Processing in Action, 2nd Edition (Final Release)
Generative Analysis: The Power of Generative AI for Object-Oriented Software Engineering with UML
Optimizing Generative AI Workloads for Sustainability Balancing Performance and Environmental Impact in Generative AI
Optimizing Generative AI Workloads for Sustainability Balancing Performance and Environmental Impact in Generative AI
A Generative Journey to AI Mastering the foundations and frontiers of generative deep learning
Computational Intelligence Methods for Sentiment Analysis in Natural Language Processing Applications
Analysis and Application of Natural Language and Speech Processing (Signals and Communication Technology)
Real-World Natural Language Processing Practical applications with deep learning
Natural Language Processing with Spark NLP Learning to Understand Text at Scale
Computational Intelligence Methods for Sentiment Analysis in Natural Language Processing Applications
Neural Networks for Natural Language Processing (Advances in Computer and Electrical Engineering)
Computational Intelligence Methods for Sentiment Analysis in Natural Language Processing Applications
Natural Language Processing in Action Understanding, analyzing, and generating text with Python
Generative Analysis The Power of Generative AI for Object-Oriented Software Engineering with UML (Early Release)