BOOKS - Hands-On Large Language Models Language Understanding and Generation (6th Ear...
Hands-On Large Language Models Language Understanding and Generation (6th Early Release) - Jay Alammar, Maarten Grootendorst 2024-03-21 EPUB O’Reilly Media, Inc. BOOKS
ECO~14 kg CO²

1 TON

Views
67935

Telegram
 
Hands-On Large Language Models Language Understanding and Generation (6th Early Release)
Author: Jay Alammar, Maarten Grootendorst
Year: 2024-03-21
Pages: 227
Format: EPUB
File size: 11.0 MB
Language: ENG



Pay with Telegram STARS
HandsOn Large Language Models: Language Understanding and Generation 6th Early Release Artificial Intelligence (AI) has made tremendous strides in recent years, with deep learning language AI systems leading the way in developing new features, products, and industries. One of the most significant advancements in this field is the ability of AI to understand and generate human-like language, which has far-reaching implications for various applications, including sentiment analysis, intent detection, entity extraction, and language detection. As a Python developer, this book will provide you with the practical tools and concepts you need to harness these capabilities today. Classification: The Core of Natural Language Processing Classifying text is one of the most common tasks in natural language processing, and it involves training a model to assign a label or class to input text. This task is used across the world for a wide range of applications, from sentiment analysis and intent detection to extracting entities and detecting language. When choosing a model for this purpose, it's crucial to consider factors like the language it can handle, architecture, size, inference speed, accuracy, and more. BERT: The Preferred Architecture for Language Understanding BERT (Bidirectional Encoder Representations from Transformers) is an excellent underlying architecture for representing text that can be finetuned for specific tasks.
HandsOn Large Language Models: Language Understanding and Generation 6 Early Release Artificial Intelligence (AI) добился огромных успехов в последние годы, благодаря системам глубокого изучения языка ИИ, лидирующим в разработке новых функций, продуктов и отраслей. Одним из наиболее значительных достижений в этой области является способность ИИ понимать и генерировать человекоподобный язык, что имеет далеко идущие последствия для различных приложений, включая анализ настроений, обнаружение намерений, извлечение сущностей и обнаружение языка. Как разработчик Python, эта книга предоставит вам практические инструменты и концепции, необходимые для использования этих возможностей сегодня. Классификация: Ядро обработки естественного языка Классификация текста является одной из наиболее распространенных задач в обработке естественного языка и включает в себя обучение модели назначению метки или класса для входного текста. Эта задача используется во всем мире для широкого спектра приложений, от анализа настроений и обнаружения намерений до извлечения сущностей и обнаружения языка. При выборе модели для этой цели важно учитывать такие факторы, как язык, с которым она может работать, архитектура, размер, скорость вывода, точность и многое другое. BERT: The Preferred Architecture for Language Understanding BERT (Bidirectional Encoder Representations from Transformers) - отличная базовая архитектура для представления текста, который может быть finetuned для конкретных задач.
HandsOn Large Language Models : Language Understanding and Generation 6 Early Release Artificial Intelligence (AI) a fait d'énormes progrès au cours des dernières années, grâce à des systèmes d'apprentissage profond du langage de l'IA, leader dans le développement de nouvelles fonctionnalités, produits et industries. L'une des avancées les plus importantes dans ce domaine est la capacité de l'IA à comprendre et à générer un langage humanoïde, ce qui a des implications considérables pour diverses applications, y compris l'analyse des sentiments, la détection des intentions, l'extraction des entités et la détection du langage. En tant que développeur Python, ce livre vous fournira les outils pratiques et les concepts dont vous avez besoin pour saisir ces opportunités aujourd'hui. Classification : cœur du traitement du langage naturel La classification du texte est l'une des tâches les plus courantes dans le traitement du langage naturel et comprend l'apprentissage d'un modèle d'attribution d'une étiquette ou d'une classe pour le texte d'entrée. Cette tâche est utilisée dans le monde entier pour un large éventail d'applications, allant de l'analyse des humeurs et de la détection des intentions à l'extraction des entités et à la détection du langage. Lors du choix d'un modèle à cette fin, il est important de tenir compte de facteurs tels que le langage avec lequel il peut fonctionner, l'architecture, la taille, la vitesse de sortie, la précision et bien plus encore. BERT : The Preferred Architecture for Language Understanding BERT (Bidirectional Encoder Representations from Transformers) est une excellente architecture de base pour représenter un texte qui peut être finalisé pour des tâches spécifiques.
HandsOn Large Language Models: Language Understanding and Generation 6 Early Release Artificial Intelligence (AI) ha logrado enormes avances en los últimos , gracias a los sistemas de aprendizaje profundo del lenguaje Ii Y, líder en el desarrollo de nuevas características, productos e industrias. Uno de los avances más significativos en este campo es la capacidad de la IA para entender y generar un lenguaje humanoide, lo que tiene implicaciones de largo alcance para diversas aplicaciones, incluyendo el análisis del estado de ánimo, la detección de intenciones, la extracción de entidades y la detección del lenguaje. Como desarrollador de Python, este libro le proporcionará las herramientas prácticas y conceptos necesarios para aprovechar estas capacidades hoy. Clasificación: núcleo de procesamiento del lenguaje natural La clasificación del texto es una de las tareas más comunes en el procesamiento del lenguaje natural e incluye enseñar al modelo a asignar una etiqueta o clase para el texto de entrada. Esta tarea se utiliza en todo el mundo para una amplia gama de aplicaciones, desde el análisis del estado de ánimo y la detección de intenciones hasta la extracción de entidades y la detección del lenguaje. A la hora de elegir un modelo para este fin, es importante tener en cuenta factores como el lenguaje con el que puede trabajar, la arquitectura, el tamaño, la velocidad de salida, la precisión y más. BERT: The Preferred Architecture for Language Understanding BERT (Bidirectional Encoder Representations from Transformers) es una excelente arquitectura básica para representar texto que puede ser finetuned para tareas específicas.
HandsOn Large Language Models: Language Understanding and Generation 6 Early Release Künstliche Intelligenz (KI) hat in den letzten Jahren enorme Fortschritte gemacht, da KI-Systeme für tiefes Sprachenlernen die Entwicklung neuer Funktionen, Produkte und Branchen anführen. Einer der bedeutendsten Fortschritte in diesem Bereich ist die Fähigkeit der KI, humanoide Sprache zu verstehen und zu erzeugen, was weitreichende Auswirkungen auf verschiedene Anwendungen hat, einschließlich der Analyse von Stimmungen, der Erkennung von Absichten, der Extraktion von Entitäten und der Erkennung von Sprache. Als Python-Entwickler bietet Ihnen dieses Buch die praktischen Werkzeuge und Konzepte, die e benötigen, um diese Funktionen heute zu nutzen. Klassifizierung: Kern der Natural Language Processing Die Textklassifizierung ist eine der häufigsten Aufgaben in der Natural Language Processing und beinhaltet die Schulung des Modells in der Zuordnung eines Labels oder einer Klasse zu einem Eingabetext. Diese Aufgabe wird weltweit für eine Vielzahl von Anwendungen eingesetzt, von der Analyse von Stimmungen und der Erkennung von Absichten bis hin zur Extraktion von Entitäten und der Erkennung von Sprache. Bei der Auswahl eines Modells für diesen Zweck ist es wichtig, Faktoren wie die Sprache, mit der es arbeiten kann, die Architektur, die Größe, die Ausgabegeschwindigkeit, die Genauigkeit und vieles mehr zu berücksichtigen. BERT: The Preferred Architecture for Language Understanding BERT (Bidirectional Encoder Representations from Transformers) ist eine hervorragende Basisarchitektur zur Darstellung von Text, der für bestimmte Aufgaben finetuned werden kann.
''
HandsOn Large Language Models: Language Understanding and Generation 6 Early Release Artificial Intelligence (AI), son yıllarda AI derin dil öğrenme sistemlerinin yeni özellikler, ürünler ve endüstriler geliştirmede öncülük etmesiyle büyük adımlar attı. Alandaki en önemli gelişmelerden biri, AI'nın duygu analizi, niyet tespiti, varlık çıkarma ve dil tespiti dahil olmak üzere çeşitli uygulamalar için geniş kapsamlı etkileri olan insan benzeri dili anlama ve üretme yeteneğidir. Bir Python geliştiricisi olarak, bu kitap size bugün bu yeteneklerden yararlanmak için ihtiyaç duyduğunuz pratik araçları ve kavramları verecektir. Sınıflandırma: Doğal dil işleme çekirdeği Metin sınıflandırması, doğal dil işlemede en yaygın görevlerden biridir ve giriş metnine bir etiket veya sınıf atamak için modeli öğretmeyi içerir. Bu görev, duygu analizi ve niyet tespitinden varlık çıkarma ve dil keşfine kadar çok çeşitli uygulamalar için dünya çapında kullanılmaktadır. Bu amaçla bir model seçerken, çalışabileceği dil, mimari, boyut, çıkış hızı, doğruluk ve daha fazlası gibi faktörleri göz önünde bulundurmak önemlidir. BERT: The Preferred Architecture for Language Understanding BERT (Bidirectional Encoder Representations from Transformers), belirli görevler için ince ayar yapılabilen metinleri sunmak için mükemmel bir temel mimaridir.
HandsOn Language Models: فهم اللغة والجيل 6 من الذكاء الاصطناعي المبكر (AI) قد خطا خطوات كبيرة في السنوات الأخيرة، حيث تقود أنظمة تعلم اللغة العميقة للذكاء الاصطناعي الطريق في تطوير ميزات ومنتجات وصناعات جديدة. أحد أهم التطورات في هذا المجال هو قدرة الذكاء الاصطناعي على فهم وتوليد لغة شبيهة بالإنسان، مع آثار بعيدة المدى على مجموعة متنوعة من التطبيقات، بما في ذلك تحليل المشاعر، واكتشاف النية، واستخراج الكيانات، واكتشاف اللغة. كمطور Python، سيوفر لك هذا الكتاب الأدوات والمفاهيم العملية التي تحتاجها للاستفادة من هذه القدرات اليوم. التصنيف: معالجة اللغة الطبيعية تصنيف النصوص هو واحد من أكثر المهام شيوعا في معالجة اللغة الطبيعية ويتضمن تدريس النموذج لتعيين ملصق أو فصل لنص المدخلات. تُستخدم هذه المهمة في جميع أنحاء العالم لمجموعة واسعة من التطبيقات، من تحليل المشاعر وكشف النية إلى استخراج الكيانات واكتشاف اللغة. عند اختيار نموذج لهذا الغرض، من المهم مراعاة عوامل مثل اللغة التي يمكن أن تعمل بها، والهندسة المعمارية، والحجم، وسرعة الإخراج، والدقة، والمزيد. BERT: العمارة المفضلة لفهم اللغة BERT (تمثيلات المشفر ثنائي الاتجاه من المحولات) هي بنية أساسية ممتازة لتقديم نص يمكن تحديده بدقة لمهام محددة.

You may also be interested in:

Hands-On Large Language Models Language Understanding and Generation (6th Early Release)
Hands-On Large Language Models Language Understanding and Generation (6th Early Release)
Hands-On Large Language Models Language Understanding and Generation (6th Early Release)
Mastering Large Language Models with Python Unleash the Power of Advanced Natural Language Processing for Enterprise Innovation and Efficiency Using Large Language Models (LLMs) with Python
Mastering Large Language Models with Python Unleash the Power of Advanced Natural Language Processing for Enterprise Innovation and Efficiency Using Large Language Models (LLMs) with Python
Python Development with Large Language Models From Text to Tasks Python Programming with the Help of Large Language Models! 5 Projects to Master Python Development with Large Language Models
Python Development with Large Language Models From Text to Tasks Python Programming with the Help of Large Language Models! 5 Projects to Master Python Development with Large Language Models
Python Development with Large Language Models From Text to Tasks Python Programming with the Help of Large Language Models! 5 Projects to Master Python Development with Large Language Models
Python Development with Large Language Models: From Text to Tasks: Python Programming with the Help of Large Language Models! 5 Projects to Master Python … Models (Python Trailblazer|s Bible)
Mastering Large Language Models with Python: Unleash the Power of Advanced Natural Language Processing for Enterprise Innovation and Efficiency Using Large … Models (LLMs) with Python (English E
Large Language Models Projects Apply and Implement Strategies for Large Language Models
Observability for Large Language Models Understanding and Improving Your Use of LLMs
Observability for Large Language Models Understanding and Improving Your Use of LLMs
Understanding Large Language Models: Learning Their Underlying Concepts and Technologies
Understanding Large Language Models Learning Their Underlying Concepts and Technologies
Understanding Large Language Models Learning Their Underlying Concepts and Technologies
Introduction to Python and Large Language Models A Guide to Language Models
Introduction to Python and Large Language Models A Guide to Language Models
Privacy and Security for Large Language Models Hands-On Privacy-Preserving Techniques for Personalized AI (Early Release)
Large Language Models An Introduction
What Is LLMOps? Large Language Models in Production
What Is LLMOps? Large Language Models in Production
LangChain and LlamaIndex Projects Lab Book Hooking Large Language Models Up to the Real World Using GPT-4, ChatGPT, Hugging Face, and local Ollama Models in Applications
LangChain and LlamaIndex Projects Lab Book Hooking Large Language Models Up to the Real World Using GPT-4, ChatGPT, Hugging Face, and local Ollama Models in Applications
Large Language Models: Concepts, Techniques and Applications
Large Language Models Concepts, Techniques and Applications
Large Language Models Concepts, Techniques and Applications
Pretrain Vision and Large Language Models in Python: End-to-end techniques for building and deploying foundation models on AWS
Large Language Models for Developers A Prompt-based Exploration
Large Language Models in Cybersecurity Threats, Exposure and Mitigation
Large Language Models in Cybersecurity: Threats, Exposure and Mitigation
Large Language Models in Cybersecurity Threats, Exposure and Mitigation
Large Language Models: A Deep Dive: Bridging Theory and Practice
Artificial Intelligence and Large Language Models An Introduction to the Technological Future
Artificial Intelligence and Large Language Models An Introduction to the Technological Future
Artificial Intelligence and Large Language Models: An Introduction to the Technological Future
Advancing Software Engineering Through AI, Federated Learning, and Large Language Models
LLMOps Managing Large Language Models in Production (Early Release)
Advancing Software Engineering Through AI, Federated Learning, and Large Language Models
Large Language Models A Deep Dive Bridging Theory and Practice