BOOKS - Ethics, Machine Learning, and Python in Geospatial Analysis
Ethics, Machine Learning, and Python in Geospatial Analysis - Mohammad Gouse Galety, Arul Kumar Natarajan, Tesfaye Fufa Gedefa, Tsegaye Demsis Lemma 2024 PDF | EPUB IGI Global BOOKS
ECO~15 kg CO²

1 TON

Views
622217

 
Ethics, Machine Learning, and Python in Geospatial Analysis
Author: Mohammad Gouse Galety, Arul Kumar Natarajan, Tesfaye Fufa Gedefa, Tsegaye Demsis Lemma
Year: 2024
Pages: 359
Format: PDF | EPUB
File size: 26.8 MB
Language: ENG



Book Description: Ethics, Machine Learning, and Python in Geospatial Analysis In geospatial analysis, navigating the complexities of data interpretation and analysis presents a formidable challenge. Traditional methods often struggle to efficiently handle vast volumes of geospatial data while providing insightful and actionable results. Scholars and practitioners grapple with manual or rule-based approaches, hindering progress in understanding and addressing pressing issues such as climate change, urbanization, and resource management. Ethics, Machine Learning, and Python in Geospatial Analysis offers a solution to these challenges by leveraging the extensive library support and user-friendly interface of Python and Machine Learning. The book's meticulously crafted chapters guide readers through the intricacies of Python programming and its application in geospatial analysis, from fundamental concepts to advanced techniques. The chapters within this book span a diverse range of topics, each contributing to a nuanced field exploration. From examining the ethical dimensions of GIS data privacy to mastering geospatial analysis with Python, each chapter provides a holistic understanding of the subject matter. The book begins by introducing the basics of Python programming and its relevance to geospatial analysis. Readers will learn how to install and set up the necessary software environments, including Python, GeoPandas, Shapely, and Fiona.
Этика, машинное обучение и Python в геопространственном анализе В геопространственном анализе навигация по сложностям интерпретации и анализа данных представляет собой серьезную проблему. Традиционные методы часто пытаются эффективно обрабатывать огромные объемы геопространственных данных, обеспечивая при этом проницательные и действенные результаты. Ученые и практики борются с ручными или основанными на правилах подходами, препятствуя прогрессу в понимании и решении насущных проблем, таких как изменение климата, урбанизация и управление ресурсами. Ethics, Machine arning и Python in Geospatial Analysis предлагают решение этих проблем, используя обширную поддержку библиотек и удобный интерфейс Python и Machine arning. Тщательно проработанные главы книги проводят читателей через тонкости программирования на Python и его применения в геопространственном анализе, от фундаментальных концепций до передовых техник. Главы в этой книге охватывают широкий спектр тем, каждая из которых способствует детальной разведке месторождений. От изучения этических аспектов конфиденциальности данных ГИС до освоения геопространственного анализа с помощью Python, каждая глава дает целостное понимание предмета. Книга начинается с ознакомления с основами программирования на Python и его актуальностью для геопространственного анализа. Читатели узнают, как установить и настроить необходимые программные среды, включая Python, GeoPandas, Shapely и Fiona.
Ethique, Machine arning et Python en analyse géospatiale Dans l'analyse géospatiale, la navigation sur la complexité de l'interprétation et de l'analyse des données est un défi majeur. s méthodes traditionnelles tentent souvent de traiter efficacement d'énormes quantités de données géospatiales, tout en produisant des résultats tangibles et efficaces. s scientifiques et les praticiens luttent contre des approches manuelles ou basées sur des règles, empêchant les progrès dans la compréhension et la résolution de problèmes urgents tels que le changement climatique, l'urbanisation et la gestion des ressources. Ethics, Machine Arning et Python in Geospatial Analysis offrent des solutions à ces problèmes en utilisant le support étendu des bibliothèques et l'interface conviviale de Python et Machine Arning. s chapitres minutieux du livre guident les lecteurs à travers les subtilités de la programmation sur Python et ses applications dans l'analyse géospatiale, des concepts fondamentaux aux techniques avancées. s chapitres de ce livre couvrent un large éventail de sujets, chacun contribuant à l'exploration détaillée des gisements. De l'étude des aspects éthiques de la confidentialité des données SIG à la maîtrise de l'analyse géospatiale par Python, chaque chapitre donne une compréhension holistique du sujet. livre commence par une introduction aux bases de la programmation sur Python et sa pertinence pour l'analyse géospatiale. s lecteurs apprendront comment installer et configurer les environnements logiciels nécessaires, y compris Python, GeoPandas, Shapely et Fiona.
Ética, aprendizaje automático y Python en el análisis geoespacial En el análisis geoespacial, la navegación por las complejidades de la interpretación y el análisis de datos representa un gran desafío. métodos tradicionales a menudo tratan de procesar grandes cantidades de datos geoespaciales de manera eficiente, al tiempo que proporcionan resultados perspicaces y eficientes. científicos y las prácticas luchan contra enfoques manuales o basados en normas, lo que impide avanzar en la comprensión y solución de problemas urgentes como el cambio climático, la urbanización y la gestión de los recursos. Ethics, Machine arning y Python in Geospatial Analysis ofrecen una solución a estos problemas mediante el uso de un amplio soporte de biblioteca y una interfaz fácil de usar de Python y Machine arning. capítulos cuidadosamente elaborados del libro guían a los lectores a través de las sutilezas de la programación en Python y sus aplicaciones en el análisis geoespacial, desde conceptos fundamentales hasta técnicas avanzadas. capítulos de este libro cubren una amplia gama de temas, cada uno de los cuales contribuye a la exploración detallada de los yacimientos. Desde el estudio de los aspectos éticos de la privacidad de los datos SIG hasta el desarrollo del análisis geoespacial con Python, cada capítulo proporciona una comprensión holística del tema. libro comienza con una introducción a los fundamentos de la programación en Python y su relevancia para el análisis geoespacial. lectores aprenderán a instalar y configurar los entornos de software necesarios, incluidos Python, GeoPandas, Shapely y Fiona.
Ethik, maschinelles rnen und Python in der Geospatial Analysis In der Geospatial Analysis stellt die Navigation durch die Komplexität der Interpretation und Analyse von Daten eine große Herausforderung dar. Traditionelle Methoden versuchen oft, große Mengen an Geodaten effizient zu verarbeiten und gleichzeitig aufschlussreiche und umsetzbare Ergebnisse zu liefern. Wissenschaftler und Praktiker kämpfen mit manuellen oder regelbasierten Ansätzen, die Fortschritte beim Verständnis und der Lösung drängender Probleme wie Klimawandel, Urbanisierung und Ressourcenmanagement behindern. Ethics, Machine arning und Python in Geospatial Analysis bieten eine Lösung für diese Probleme mit umfangreicher Bibliotheksunterstützung und einer benutzerfreundlichen Python- und Machine arning-Schnittstelle. Die sorgfältig ausgearbeiteten Kapitel des Buches führen die ser durch die Feinheiten der Python-Programmierung und ihre Anwendungen in der Geospatial-Analyse, von grundlegenden Konzepten bis hin zu fortgeschrittenen Techniken. Die Kapitel in diesem Buch decken eine breite Palette von Themen ab, von denen jedes zur detaillierten Exploration von Lagerstätten beiträgt. Von der Untersuchung ethischer Aspekte des GIS-Datenschutzes bis hin zur Beherrschung der Geodatenanalyse mit Python bietet jedes Kapitel ein ganzheitliches Verständnis des Themas. Das Buch beginnt mit einer Einführung in die Grundlagen der Python-Programmierung und deren Relevanz für die Geodatenanalyse. Die ser lernen, wie sie die erforderlichen Softwareumgebungen wie Python, GeoPandas, Shapely und Fiona installieren und konfigurieren.
''
Jeo Uzamsal Analizde Etik, Makine Öğrenimi ve Python Jeo uzamsal analizde, verilerin yorumlanması ve analiz edilmesinin karmaşıklığında gezinmek büyük bir zorluktur. Geleneksel yöntemler genellikle çok miktarda jeo-uzamsal veriyi verimli bir şekilde işlemeye çalışırken, anlayışlı ve uygulanabilir sonuçlar sağlar. Bilim adamları ve uygulayıcılar, manuel veya kural temelli yaklaşımlarla mücadele etmekte, iklim değişikliği, kentleşme ve kaynak yönetimi gibi acil sorunları anlama ve ele alma konusundaki ilerlemeyi engellemektedir. Geospatial Analysis'te Ethics, Machine arning ve Python, kapsamlı kütüphane desteği ve kullanıcı dostu bir Python ve Machine arning arayüzü kullanarak bu sorunlara çözümler sunar. Kitabın ayrıntılı bölümleri, okuyuculara Python programlamanın inceliklerini ve jeo-uzamsal analizdeki uygulamalarını, temel kavramlardan ileri tekniklere kadar yönlendirir. Bu kitaptaki bölümler, her biri alanların ayrıntılı bir şekilde incelenmesine katkıda bulunan çok çeşitli konuları kapsamaktadır. GIS veri gizliliğinin etik yönlerini keşfetmekten Python ile jeo-uzamsal analize hakim olmaya kadar, her bölüm konunun bütünsel bir anlayışını sağlar. Kitap, Python programlamanın temellerine ve jeo uzamsal analizle olan ilgisine bir giriş ile başlar. Okuyucular Python, GeoPandas, Shapely ve Fiona dahil olmak üzere gerekli yazılım ortamlarının nasıl kurulacağını ve yapılandırılacağını öğreneceklerdir.
الأخلاقيات والتعلم الآلي والبايثون في التحليل الجغرافي المكاني في التحليل الجغرافي المكاني، يعد التنقل في تعقيدات تفسير البيانات وتحليلها تحديًا كبيرًا. غالبًا ما تحاول الأساليب التقليدية معالجة كميات هائلة من البيانات الجغرافية المكانية بكفاءة مع توفير نتائج ثاقبة وقابلة للتنفيذ. يكافح العلماء والممارسون مع النهج اليدوية أو القائمة على القواعد، مما يعيق التقدم في فهم ومعالجة القضايا الملحة مثل تغير المناخ والتحضر وإدارة الموارد. تقدم الأخلاقيات والتعلم الآلي و Python في التحليل الجغرافي المكاني حلولاً لهذه المشكلات باستخدام دعم مكتبي واسع وواجهة Python والتعلم الآلي سهلة الاستخدام. توجه فصول الكتاب المفصلة القراء من خلال تعقيدات برمجة بايثون وتطبيقاتها في التحليل الجغرافي المكاني، من المفاهيم الأساسية إلى التقنيات المتقدمة. تغطي فصول هذا الكتاب مجموعة واسعة من الموضوعات، كل منها يساهم في استكشاف تفصيلي للحقول. من استكشاف الجوانب الأخلاقية لخصوصية بيانات نظام المعلومات الجغرافية إلى إتقان التحليل الجغرافي المكاني باستخدام بايثون، يوفر كل فصل فهمًا شاملاً للموضوع. يبدأ الكتاب بمقدمة لأساسيات برمجة بايثون وصلتها بالتحليل الجغرافي المكاني. سيتعلم القراء كيفية تثبيت وتكوين بيئات البرامج اللازمة، بما في ذلك Python و GeoPandas و Shapely و Fiona.

You may also be interested in:

Computer Programming This Book Includes Machine Learning for Beginners, Machine Learning with Python, Deep Learning with Python, Python for Data Analysis
Programming With Python 4 Manuscripts - Deep Learning With Keras, Convolutional Neural Networks In Python, Python Machine Learning, Machine Learning With Tensorflow
Python Machine Learning The Ultimate Guide for Beginners to Machine Learning with Python, Programming and Deep Learning, Artificial Intelligence, Neural Networks, and Data Science
Ethics, Machine Learning, and Python in Geospatial Analysis
Ethics, Machine Learning, and Python in Geospatial Analysis
Ethics, Machine Learning, and Python in Geospatial Analysis
Hands-On Machine Learning with Scikit-Learn and Scientific Python Toolkits: A practical guide to implementing supervised and unsupervised machine learning algorithms in Python
Machine Learning Hero Master Data Science with Python Essentials Machine Learning with Python Hands-On Guide from Beginner to Expert (Mastering the AI Revolution Book 1)
Python Machine Learning A Hands-On Beginner|s Guide to Effectively Understand Artificial Neural Networks and Machine Learning Using Python
Python Machine Learning Is The Complete Guide To Everything You Need To Know About Python Machine Learning Keras, Numpy, Scikit Learn, Tensorflow, With Useful Exercises and examples
Python Machine Learning Understand Python Libraries (Keras, NumPy, Scikit-lear, TensorFlow) for Implementing Machine Learning Models in Order to Build Intelligent Systems
Python Machine Learning for Beginners: Unlocking the Power of Data. A Beginner|s Guide to Machine Learning with Python
Python Machine Learning for Beginners Unlocking the Power of Data. A Beginner|s Guide to Machine Learning with Python
Python Machine Learning for Beginners Unlocking the Power of Data. A Beginner|s Guide to Machine Learning with Python
Machine Learning with Python Comprehensive Beginner’s Guide to Machine Learning in Python with Exercises and Case Studies
Python Machine Learning: Leveraging Python for Implementing Machine Learning Algorithms and Applications (2023 Guide)
Python Machine Learning Discover the Essentials of Machine Learning, Data Analysis, Data Science, Data Mining and Artificial Intelligence Using Python Code with Python Tricks
Python Machine Learning A Complete Guide for Beginners on Machine Learning and Deep Learning with Python
Python Machine Learning Machine Learning and Deep Learning with Python, scikit-learn and Tensorflow
Programming Machine Learning Machine Learning Basics Concepts + Artificial Intelligence + Python Programming + Python Machine Learning
Programming Machine Learning Machine Learning Basics Concepts + Artificial Intelligence + Python Programming + Python Machine Learning
Machine Learning With Python A Comprehensive Beginners Guide to Learn the Realms of Machine Learning with Python
Python Machine Learning: Everything You Should Know About Python Machine Learning Including Scikit Learn, Numpy, PyTorch, Keras And Tensorflow With Step-By-Step Examples And PRACTICAL Exercises
Machine Learning with Python Advanced and Effective Strategies Using Machine Learning with Python Theories
Machine Learning in Python Hands on Machine Learning with Python Tools, Concepts and Techniques
Machine Learning With Python Programming 2023 A Beginners Guide The Definitive Guide to Mastering Machine Learning in Python and a Problem-Guide Solver to Creating Real-World Intelligent Systems
Machine Learning With Python Programming 2023 A Beginners Guide The Definitive Guide to Mastering Machine Learning in Python and a Problem-Guide Solver to Creating Real-World Intelligent Systems
Debugging Machine Learning Models with Python: Develop high-performance, low-bias, and explainable machine learning and deep learning models
Building Machine Learning Systems Using Python Practice to Train Predictive Models and Analyze Machine Learning Results
Online Machine Learning: A Practical Guide with Examples in Python (Machine Learning: Foundations, Methodologies, and Applications)
Python Programming, Deep Learning: 3 Books in 1: A Complete Guide for Beginners, Python Coding for AI, Neural Networks, and Machine Learning, Data Science Analysis … Learners (Python Programming
Machine Learning for Beginners Build and deploy Machine Learning systems using Python, 2nd Edition
Machine Learning A Guide to PyTorch, TensorFlow, and Scikit-Learn Mastering Machine Learning With Python
Machine Learning: A Guide to PyTorch, TensorFlow, and Scikit-Learn: Mastering Machine Learning With Python
Machine Learning A Guide to PyTorch, TensorFlow, and Scikit-Learn Mastering Machine Learning With Python
Python: 3 books in 1 : Python basics for Beginners + Python Automation Techniques And Web Scraping + Python For Data Science And Machine Learning
Machine Learning for Finance Master Financial Strategies with Python-Powered Machine Learning
Machine Learning for Finance Master Financial Strategies with Python-Powered Machine Learning
Pragmatic Machine Learning with Python Learn How to Deploy Machine Learning Models in Production
Machine Learning with Python The Ultimate Guide to Learn Machine Learning Algorithms. Includes a Useful Section about Analysis, Data Mining and Artificial Intelligence in Business Applications