BOOKS - Data-Centric Artificial Intelligence for Multidisciplinary Applications
Data-Centric Artificial Intelligence for Multidisciplinary Applications - Parikshit N. Mahalle, Namrata N. Wasatkar, Gitanjali R. Shinde 2024 PDF CRC Press BOOKS
ECO~15 kg CO²

1 TON

Views
18379

Telegram
 
Data-Centric Artificial Intelligence for Multidisciplinary Applications
Author: Parikshit N. Mahalle, Namrata N. Wasatkar, Gitanjali R. Shinde
Year: 2024
Pages: 309
Format: PDF
File size: 19.4 MB
Language: ENG



Pay with Telegram STARS
DataCentric Artificial Intelligence for Multidisciplinary Applications: A Paradigm Shift in AI Development In today's rapidly evolving technological landscape, the field of Artificial Intelligence (AI) is undergoing a significant transformation. The traditional model-centric approach, where AI models are built based on predefined algorithms and rules, is being challenged by a new paradigm - the DataCentric approach. This shift in perspective emphasizes the importance of high-quality data and its role in developing and implementing AI systems. The book "DataCentric Artificial Intelligence for Multidisciplinary Applications" explores the need for a DataCentric AI approach and its application in various domains, highlighting the benefits and potential of this paradigm shift. The Need for a DataCentric Approach The traditional model-centric approach to AI has been successful in solving specific problems within well-defined domains. However, as AI applications expand into more complex and multidisciplinary areas, the limitations of this approach become increasingly evident. The DataCentric approach offers a more comprehensive and flexible way of building AI systems that can adapt to changing data and environments. By focusing on data quality and analysis, DataCentric AI can provide more accurate and reliable outcomes, making it an essential tool for addressing the challenges of the future.
DataCentric Artificial Intelligence for Multidisciplinary Applications: A Paradigm Shift in AI Development В современном быстро развивающемся технологическом ландшафте сфера искусственного интеллекта (ИИ) переживает значительную трансформацию. Традиционный модельно-ориентированный подход, где модели ИИ строятся на основе заранее заданных алгоритмов и правил, оспаривается новой парадигмой - подходом DataCentric. Этот сдвиг в перспективе подчеркивает важность высококачественных данных и их роль в разработке и внедрении систем ИИ. Книга «DataCentric Artificial Intelligence for Multidisciplinary Applications» исследует необходимость подхода DataCentric AI и его применения в различных областях, подчеркивая преимущества и потенциал этой смены парадигмы. Потребность в подходе, ориентированном на данные Традиционный подход к ИИ, ориентированный на модели, успешно решает конкретные проблемы в четко определенных областях. Однако по мере того, как приложения ИИ расширяются в более сложные и междисциплинарные области, ограничения этого подхода становятся все более очевидными. Подход DataCentric предлагает более полный и гибкий способ создания систем искусственного интеллекта, которые могут адаптироваться к изменяющимся данным и средам. Сосредоточив внимание на качестве и анализе данных, DataCentric AI может обеспечить более точные и надежные результаты, что делает его важным инструментом для решения проблем будущего.
DataCentric Artificial Intelligence for Multidisciplinary Applications : A Paradigm Shift in AI Development Dans le paysage technologique en évolution rapide d'aujourd'hui, le domaine de l'intelligence artificielle (IA) connaît une transformation importante. L'approche modélisée traditionnelle, où les modèles d'IA sont construits sur la base d'algorithmes et de règles prédéfinis, est contestée par un nouveau paradigme, DataCentric. Ce changement de perspective souligne l'importance des données de haute qualité et leur rôle dans la conception et la mise en œuvre des systèmes d'IA. livre « DataCentric Artificial Intelligence for Multidisciplinary Applications » explore la nécessité de l'approche DataCentric AI et de son application dans différents domaines, en soulignant les avantages et le potentiel de ce changement de paradigme. Nécessité d'une approche axée sur les données L'approche traditionnelle de l'IA axée sur les modèles répond avec succès à des problèmes spécifiques dans des domaines bien définis. Cependant, à mesure que les applications de l'IA se développent dans des domaines plus complexes et interdisciplinaires, les limites de cette approche deviennent de plus en plus évidentes. L'approche DataCentric offre un moyen plus complet et plus flexible de créer des systèmes d'intelligence artificielle qui peuvent s'adapter à l'évolution des données et des environnements. En se concentrant sur la qualité et l'analyse des données, DataCentric AI peut fournir des résultats plus précis et plus fiables, ce qui en fait un outil essentiel pour relever les défis de l'avenir.
DataCentric Inteligencia Artificial para Aplicaciones Multidisciplinarias: A Paradigm Shift in AI Development En el panorama tecnológico actual y en rápida evolución, el campo de la inteligencia artificial (IA) está experimentando una transformación significativa. enfoque tradicional basado en modelos, donde los modelos de IA se construyen sobre la base de algoritmos y reglas preestablecidos, está siendo desafiado por un nuevo paradigma: el enfoque DataCentric. Este cambio de perspectiva pone de relieve la importancia de los datos de alta calidad y su papel en el desarrollo e implementación de sistemas de IA. libro «DataCentric Artificial Intelligence for Multidisciplinary Applications» explora la necesidad de un enfoque de DataCentric AI y sus aplicaciones en diferentes campos, destacando los beneficios y el potencial de este cambio de paradigma. La necesidad de un enfoque centrado en los datos enfoque tradicional de la IA centrado en los modelos aborda con éxito problemas específicos en áreas claramente definidas. n embargo, a medida que las aplicaciones de IA se expanden a campos más complejos e interdisciplinarios, las limitaciones de este enfoque son cada vez más evidentes. enfoque DataCentric ofrece una forma más completa y flexible de crear sistemas de inteligencia artificial que puedan adaptarse a datos y entornos cambiantes. Al centrarse en la calidad y el análisis de datos, DataCentric AI puede proporcionar resultados más precisos y confiables, lo que lo convierte en una herramienta importante para enfrentar los desafíos del futuro.
A Paradigm Shift in AI Development In un panorama tecnologico in continua evoluzione, il settore dell'intelligenza artificiale (IA) sta attraversando una grande trasformazione. Il tradizionale approccio orientato alla moda, in cui i modelli di IA sono basati su algoritmi e regole predefiniti, viene contestato da un nuovo paradigma, l'approccio del DataCentric. Questo cambiamento di prospettiva sottolinea l'importanza dei dati di alta qualità e il loro ruolo nello sviluppo e nell'implementazione dei sistemi di IA. Il libro «DataCentric DataCentric Intelligence per le Applicazioni Multispeciplinarie» esamina la necessità di un approccio e di applicarlo in diversi ambiti, sottolineando i vantaggi e le potenzialità di questo cambiamento di paradigma. La necessità di un approccio orientato ai dati Un approccio tradizionale all'IA basato sui modelli risolve con successo problemi specifici in ambiti ben definiti. Tuttavia, con l'espansione delle applicazioni di IA in aree più complesse e interdisciplinari, i limiti di questo approccio diventano sempre più evidenti. L'approccio del DataCentric offre un modo più completo e flessibile per creare sistemi di intelligenza artificiale in grado di adattarsi ai dati e agli ambienti in evoluzione. Focalizzandosi sulla qualità e l'analisi dei dati, l'AI può fornire risultati più precisi e affidabili, rendendolo uno strumento essenziale per affrontare i problemi futuri.
DataCentric Künstliche Intelligenz für multidisciplinäre Anwendungen: Paradigmenwechsel in der KI-Entwicklung In der heutigen schnelllebigen Technologielandschaft befindet sich der Bereich der Künstlichen Intelligenz (KI) im Umbruch. Der traditionelle modellorientierte Ansatz, bei dem KI-Modelle auf vordefinierten Algorithmen und Regeln basieren, wird durch ein neues Paradigma herausgefordert - den DataCentric-Ansatz. Dieser Perspektivwechsel unterstreicht die Bedeutung hochwertiger Daten und deren Rolle bei der Entwicklung und Implementierung von KI-Systemen. Das Buch „DataCentric Artificial Intelligence for Multidisciplinary Applications“ untersucht die Notwendigkeit des DataCentric AI-Ansatzes und seiner Anwendung in verschiedenen Bereichen und hebt die Vorteile und das Potenzial dieses Paradigmenwechsels hervor. Die Notwendigkeit eines datengetriebenen Ansatzes Der traditionelle modellgetriebene Ansatz der KI löst erfolgreich spezifische Probleme in klar definierten Bereichen. Da KI-Anwendungen jedoch in komplexere und interdisziplinärere Bereiche expandieren, werden die Grenzen dieses Ansatzes immer deutlicher. Der DataCentric-Ansatz bietet eine umfassendere und flexiblere Möglichkeit, KI-Systeme zu erstellen, die sich an sich ändernde Daten und Umgebungen anpassen können. Durch die Fokussierung auf Datenqualität und -analyse kann DataCentric AI genauere und zuverlässigere Ergebnisse liefern und ist damit ein wichtiges Werkzeug, um die Herausforderungen der Zukunft zu meistern.
Centralna sztuczna inteligencja dla zastosowań multidyscyplinarnych: Zmiana paradygmatu w rozwoju sztucznej inteligencji W dzisiejszym szybko rozwijającym się krajobrazie technologicznym dziedzina sztucznej inteligencji (AI) przechodzi znaczącą transformację. Tradycyjne podejście zorientowane na model, w którym modele AI zbudowane są w oparciu o z góry określone algorytmy i zasady, jest kwestionowane przez nowy paradygmat - Podejście Centric. Zmiana ta podkreśla znaczenie wysokiej jakości danych oraz ich rolę w projektowaniu i wdrażaniu systemów sztucznej inteligencji. W książce „Europejska Sztuczna Inteligencja Centralna dla Zastosowań Multidyscyplinarnych” odkryto potrzebę podejścia i jego zastosowania w wielu dziedzinach, podkreślając korzyści i potencjał tej zmiany paradygmatu. Potrzeba podejścia opartego na danych Tradycyjne podejście oparte na modelach do sztucznej inteligencji skutecznie rozwiązuje konkretne wyzwania w ściśle określonych obszarach. Jednak wraz z rozszerzeniem się aplikacji na obszary bardziej złożone i interdyscyplinarne, ograniczenia tego podejścia stają się bardziej widoczne. Dzięki podejściu do systemu, które jest bardziej kompleksowe i elastyczne, można zbudować systemy sztucznej inteligencji, które mogą dostosować się do zmieniających się danych i środowisk. Skupiając się na jakości i analizie danych, aplikacja ΔCentric AI może zapewnić bardziej dokładne i wiarygodne wyniki, co czyni ją ważnym narzędziem do sprostania wyzwaniom przyszłości.
''
DataCentric Çok Disiplinli Uygulamalar için Yapay Zeka: Yapay Zeka Gelişiminde Bir Paradigma Değişimi Günümüzün hızla gelişen teknolojik ortamında, yapay zeka (AI) alanı önemli bir dönüşüm geçiriyor. AI modellerinin önceden belirlenmiş algoritmalar ve kurallar temelinde inşa edildiği geleneksel model odaklı yaklaşım, yeni bir paradigma olan DataCentric yaklaşımı ile tartışılmaktadır. Perspektifteki bu değişim, yüksek kaliteli verilerin önemini ve AI sistemlerinin tasarımı ve uygulanmasındaki rolünü vurgulamaktadır. "DataCentric Artificial Intelligence for Multidisipliner Applications" (Çok Disiplinli Uygulamalar için DataCentric Yapay Zeka) kitabı, DataCentric AI yaklaşımına ve bunun birden fazla alanda uygulanmasına duyulan ihtiyacı araştırıyor ve bu paradigma değişiminin faydalarını ve potansiyelini vurguluyor. Veri merkezli bir yaklaşım ihtiyacı Yapay zekaya yönelik geleneksel model merkezli yaklaşım, iyi tanımlanmış alanlardaki belirli zorlukları başarıyla ele almaktadır. Bununla birlikte, AI uygulamaları daha karmaşık ve disiplinlerarası alanlara genişledikçe, bu yaklaşımın sınırlamaları daha belirgin hale gelmektedir. DataCentric yaklaşımı, değişen verilere ve ortamlara uyum sağlayabilen yapay zeka sistemleri oluşturmak için daha kapsamlı ve esnek bir yol sunar. DataCentric AI, veri kalitesi ve analizine odaklanarak daha doğru ve güvenilir sonuçlar sağlayabilir ve bu da onu geleceğin zorluklarını ele almak için önemli bir araç haline getirir.
الذكاء الاصطناعي المتمركز حول البيانات للتطبيقات متعددة التخصصات: تحول نموذجي في تطوير الذكاء الاصطناعي في المشهد التكنولوجي سريع التطور اليوم، يمر مجال الذكاء الاصطناعي (AI) بتحول كبير. النهج التقليدي الموجه نحو النموذج، حيث يتم بناء نماذج الذكاء الاصطناعي على أساس خوارزميات وقواعد محددة مسبقًا، يتنازع عليه نموذج جديد - نهج DataCentric. يسلط هذا التحول في المنظور الضوء على أهمية البيانات عالية الجودة ودورها في تصميم وتنفيذ أنظمة الذكاء الاصطناعي. يستكشف كتاب "DataCentric Artificial Intelligence for Multidisciples Applications'الحاجة إلى نهج DataCentric AI وتطبيقه عبر مجالات متعددة، مما يسلط الضوء على فوائد وإمكانات هذا التحول النموذجي. 27- يتصدى النهج التقليدي المتمحور حول النموذج إزاء الذكاء الاصطناعي بنجاح لتحديات محددة في مجالات محددة جيداً. ومع ذلك، مع توسع تطبيقات الذكاء الاصطناعي إلى مجالات أكثر تعقيدًا ومتعددة التخصصات، أصبحت قيود هذا النهج أكثر وضوحًا. يوفر نهج DataCentric طريقة أكثر شمولاً ومرونة لبناء أنظمة ذكاء اصطناعي يمكنها التكيف مع البيانات والبيئات المتغيرة. من خلال التركيز على جودة البيانات وتحليلها، يمكن أن يوفر الذكاء الاصطناعي DataCentric نتائج أكثر دقة وموثوقية، مما يجعله أداة مهمة لمواجهة تحديات المستقبل.
數據中心人工智能用於多學科應用:AI開發中的偏見轉移在當今快速發展的技術格局中,人工智能(AI)領域正在經歷重大轉型。傳統的AI模型基於預設算法和規則構建的面向模型的方法受到新範例DataCentric方法的挑戰。這一觀點轉變突顯了高質量數據的重要性及其在人工智能系統的設計和實施中的作用。該書「用於多學科應用的DataCentric人工智能」探討了DataCentric AI方法的必要性及其在各個領域的應用,強調了這種範式轉變的優勢和潛力。以數據為中心的方法傳統的AI模式方法成功地解決了明確界定的領域的特定問題。但是,隨著AI應用程序擴展到更復雜和跨學科的領域,這種方法的局限性變得越來越明顯。DataCentric方法提供了一種更全面、更靈活的方式來創建能夠適應不斷變化的數據和環境的人工智能系統。通過專註於數據質量和分析,DataCentric AI可以提供更準確和更可靠的結果,使其成為應對未來挑戰的重要工具。

You may also be interested in:

Data-Centric Artificial Intelligence for Multidisciplinary Applications
Data-Centric Artificial Intelligence for Multidisciplinary Applications
Data Centric Artificial Intelligence: A Beginner|s Guide (Data-Intensive Research)
Intelligent Data Analysis for Biomedical Applications Challenges and Solutions (Intelligent Data-Centric Systems Sensor Collected Intelligence)
Handbook of Artificial Intelligence and Big Data Applications in Investments
Business Intelligence An Essential Beginner’s Guide to BI, Big Data, Artificial Intelligence, Cybersecurity, Machine Learning, Data Science, Data Analytics, Social Media and Internet Marketing
Applications of Big Data and Artificial Intelligence in Smart Energy Systems Volume 1
Applications of Big Data and Artificial Intelligence in Smart Energy Systems Volume 2
Artificial Intelligence and Data Science in Recommendation System Current Trends, Technologies and Applications
Artificial Intelligence and Data Science in Recommendation System Current Trends, Technologies and Applications
Twelfth Scandinavian Conference on Artificial Intelligence: SCAI 2013 (Frontiers in Artificial Intelligence and Applications)
Optimization and Computing using Intelligent Data-Driven Approaches for Decision-Making Artificial Intelligence Applications
Optimization and Computing using Intelligent Data-Driven Approaches for Decision-Making Artificial Intelligence Applications
Big data A Guide to Big Data Trends, Artificial Intelligence, Machine Learning, Predictive Analytics, Internet of Things, Data Science, Data Analytics, Business Intelligence, and Data Mining
Artificial Intelligence and Internet of Things based Augmented Trends for Data Driven Systems (Intelligent Data-Driven Systems and Artificial Intelligence)
Introduction to Multidisciplinary Science with Artificial Intelligence: Geodesy, Geotherms, Quantum Entanglement, and Spectroscopy
Introduction to Multidisciplinary Science with Artificial Intelligence Geodesy, Geotherms, Quantum Entanglement, and Spectroscopy
Introduction to Multidisciplinary Science with Artificial Intelligence Geodesy, Geotherms, Quantum Entanglement, and Spectroscopy
The Use of Artificial Intelligence for Space Applications: Workshop at the 2022 International Conference on Applied Intelligence and Informatics (Studies in Computational Intelligence Book 1088)
Swarm Intelligence for Resource Management in Internet of Things (Intelligent Data-Centric Systems)
Data-Centric Business and Applications: ICT Systems - Theory, Radio-Electronics, Information Technologies and Cybersecurity (Lecture Notes on Data Engineering and Communications Technologies)
Artificial Intelligence for Robotics and Autonomous Systems Applications (Studies in Computational Intelligence Book 1093)
Security in IoT Social Networks (Intelligent Data-Centric Systems Sensor Collected Intelligence)
Python Programming Advanced Applications and Features Object-Oriented Programming, Data Analysis, Artificial Intelligence and Machine Learning with Python
Data Science in Chemistry: Artificial Intelligence, Big Data, Chemometrics and Quantum Computing with Jupyter
Machine Learning with Python The Ultimate Guide to Learn Machine Learning Algorithms. Includes a Useful Section about Analysis, Data Mining and Artificial Intelligence in Business Applications
Data Science in Chemistry Artificial Intelligence, Big Data, Chemometrics and Quantum Computing with Jupyter (De Gruyter Textbook)
Artificial Intelligence and Industrial Applications: Algorithms, Techniques, and Engineering Applications (Lecture Notes in Networks and Systems, 772)
Machine Intelligence for Internet of Medical Things: Applications and Future Trends (Computational Intelligence for Data Analysis Book 2)
Data-Driven Modelling with Fuzzy Sets: Embracing Uncertainty (Intelligent Data-Driven Systems and Artificial Intelligence)
Artificial Intelligence For Business How Your Company Can Make More Profit with Machine Learning, Data Science, Big Data, and Deep Learning
Artificial Intelligence for Sustainable Applications
Handbook of Artificial Intelligence Applications
Engineering Applications of Artificial Intelligence
The Use of Artificial Intelligence for Space Applications
Engineering Applications of Artificial Intelligence
Learn Python Programming A Beginners Crash Course on Python Language for Getting Started with Machine Learning, Data Science and Data Analytics (Artificial Intelligence Book 1)
Artificial Intelligence and Data Mining in Healthcare
Artificial Intelligence and Multimedia Data Engineering
Big Data Analytics Using Artificial Intelligence