BOOKS - PROGRAMMING - Computational Methods for Data Analysis
Computational Methods for Data Analysis - Yeliz Karaca, Carlo Cattani 2018 PDF de Gruyter BOOKS PROGRAMMING
ECO~15 kg CO²

1 TON

Views
602733

 
Computational Methods for Data Analysis
Author: Yeliz Karaca, Carlo Cattani
Year: 2018
Pages: 398
Format: PDF
File size: 10.1 MB
Language: ENG



The book is intended for students who want to learn how to use computational methods to solve realworld problems. Book Description: Computational Methods for Data Analysis Author: Yeliz Karaca, Carlo Cattani 2018 398 de Gruyter Summary: In this groundbreaking graduate text, Yeliz Karaca, Carlo Cattani delves into the world of computational methods for data analysis, providing readers with a comprehensive overview of mathematical and statistical tools used to analyze large datasets from various fields such as biology, medicine, and economics. With a focus on practical applications, the book equips students with the skills necessary to develop efficient computational algorithms for processing real-life data using MATLAB. Neural Networks, Markov Chains, and Wavelet Analysis The book begins by introducing the fundamental concepts of neural networks, Markov chains, and wavelet analysis, laying the foundation for more advanced topics in the subsequent chapters. These techniques are explored in detail, enabling readers to understand their applications in different domains and the power of computational methods in solving complex problems.
Книга предназначена для студентов, которые хотят научиться использовать вычислительные методы для решения задач реального мира. Вычислительные методы анализа данных Автор: Йелиз Караца, Карло Каттани 2018 398 de Gruyter Резюме: В этом новаторском тексте для выпускников Йелиз Караца, Карло Каттани углубляется в мир вычислительных методов анализа данных, предоставляя читателям всесторонний обзор математических и статистических инструментов, используемых для анализа больших наборов данных из различных областей, таких как биология, медицина, и экономики. Ориентируясь на практические применения, книга дает студентам навыки, необходимые для разработки эффективных вычислительных алгоритмов обработки реальных данных с помощью MATLAB. Нейронные сети, цепи Маркова и вейвлет-анализ Книга начинается с введения фундаментальных концепций нейронных сетей, цепей Маркова и вейвлет-анализа, закладывая основу для более продвинутых тем в последующих главах. Эти методы подробно изучены, что позволяет читателям понять их приложения в различных областях и возможности вычислительных методов в решении сложных задач.
Il libro è progettato per gli studenti che vogliono imparare a usare le tecniche informatiche per affrontare le sfide del mondo reale. Metodi informatici per l'analisi dei dati Autore: Yelise Karaza, Carlo Cattani 2018 398 de Gruyter Curriculum: In questo innovativo testo per i laureati Yelise Karatz, Carlo Cattani approfondisce il mondo dell'analisi informatica dei dati, fornendo ai lettori una panoramica completa degli strumenti matematici e statistici utilizzati per analizzare grandi set di dati provenienti da ambiti come biologia, medicina e biologia e l'economia. Focalizzandosi sulle applicazioni pratiche, il libro fornisce agli studenti le competenze necessarie per sviluppare algoritmi di elaborazione efficaci con MATLAB. reti neurali, le catene Markov e l'analisi wavlet Il libro inizia con l'introduzione di concetti fondamentali delle reti neurali, le catene Markov e l'analisi wavlet, ponendo le basi per argomenti più avanzati nei capitoli successivi. Questi metodi sono stati approfonditi per consentire ai lettori di comprendere le loro applicazioni in diversi ambiti e le capacità di elaborazione per affrontare le sfide.
''
この本は、現実世界の問題を解決するために計算方法を使用する方法を学びたい学生を対象としています。計算データ分析方法著者:Yeliz Caraca、 Carlo Cattani 2018 398 de Gruyter要約:Yeliz Caraca卒業生のためのこの画期的なテキストでは、Carlo Cattaniは計算データ分析方法の世界を掘り下げ、読者に包括的な概要を提供します生物学、医学、経済などの多様な分野の大規模なデータセットを分析するために使用される数学的および統計的ツール。実用的なアプリケーションに焦点を当て、MATLABを使用して実際のデータを処理するための効率的な計算アルゴリズムを開発するために必要なスキルを学生に提供します。ニューラルネットワーク、マルコフ回路、ウェーブレット解析本は、ニューラルネットワーク、マルコフ回路、ウェーブレット解析の基本的な概念を紹介し、その後の章でより高度なトピックの基礎を築くことから始まります。これらの方法は詳細に研究されており、読者は複雑な問題を解決するための様々な分野の応用と計算方法の可能性を理解することができます。

You may also be interested in:

Computational Methods for Data Analysis
Computational Methods for Data Analysis (De Gruyter Textbook)
Computational Methods for Engineers Modeling, Algorithms and Analysis
Spatial Analysis with R Statistics, Visualization, and Computational Methods, 2nd Edition
Computational Intelligence Methods for Sentiment Analysis in Natural Language Processing Applications
Computational Intelligence Methods for Sentiment Analysis in Natural Language Processing Applications
Computational Intelligence Methods for Sentiment Analysis in Natural Language Processing Applications
Advanced Metaheuristic Methods in Big Data Retrieval and Analytics (Advances in Computational Intelligence and Robotics)
Computational Methods in Engineering: Finite Difference, Finite Volume, Finite Element, and Dual Mesh Control Domain Methods (Applied and Computational Mechanics)
Transcriptome Data Analysis Methods and Protocols
Introduction to Scientific Computing and Data Analysis (Texts in Computational Science and Engineering Book 13)
Statistical and Econometric Methods for Transportation Data Analysis
Applied Machine Learning for Smart Data Analysis (Computational Intelligence in Engineering Problem Solving)
Quantitative Methods of Data Analysis for the Physical Sciences and Engineering
Microarray Data Analysis (Methods in Molecular Biology, 2401)
What is Quantitative Longitudinal Data Analysis? (The ‘What is?| Research Methods Series)
CRC Handbook of Basic Tables for Chemical Analysis Data-Driven Methods and Interpretation, Fourth Edition
Machine Intelligence for Internet of Medical Things: Applications and Future Trends (Computational Intelligence for Data Analysis Book 2)
Python Data Analysis Transforming Raw Data into Actionable Intelligence with Python|s Data Analysis Capabilities
Python Data Analysis Transforming Raw Data into Actionable Intelligence with Python|s Data Analysis Capabilities
Hands-On Data Analysis with Pandas Efficiently perform data collection, wrangling, analysis, and visualization using Python
Time Series Analysis with Python Cookbook: Practical recipes for exploratory data analysis, data preparation, forecasting, and model evaluation
Pandas in 7 Days: Utilize Python to Manipulate Data, Conduct Scientific Computing, Time Series Analysis, and Exploratory Data Analysis (English Edition)
Machine Learning and Deep Learning in Computational Toxicology (Computational Methods in Engineering and the Sciences)
Ultimate Python Libraries for Data Analysis and Visualization: Leverage Pandas, NumPy, Matplotlib, Seaborn, Julius AI and No-Code Tools for Data Acquisition, … and Statistical Analysis (English
Advanced Data Analytics with AWS Explore Data Analysis Concepts in the Cloud to Gain Meaningful Insights and Build Robust Data Engineering Workflows Across Diverse Data Sources
Data Analytics: Practical Guide to Leveraging the Power of Algorithms, Data Science, Data Mining, Statistics, Big Data, and Predictive Analysis to Improve Business, Work, and Life
Advanced Data Analytics with AWS Explore Data Analysis Concepts in the Cloud to Gain Meaningful Insights and Build Robust Data Engineering Workflows Across Diverse Data Sources
Data Analytics Practical Guide to Leveraging the Power of Algorithms, Data Science, Data Mining, Statistics, Big Data, and Predictive Analysis to Improve Business, Work, and Life
Advanced Data Analytics with AWS: Explore Data Analysis Concepts in the Cloud to Gain Meaningful Insights and Build Robust Data Engineering Workflows Across Diverse Data Sources (English Edition)
Data Analysis Foundations with Python Master Python and Data Analysis using NumPy, Pandas, Matplotlib, and Seaborn A Hands-On Guide with Projects and Case Studies
Data Analysis Foundations with Python Master Python and Data Analysis using NumPy, Pandas, Matplotlib, and Seaborn A Hands-On Guide with Projects and Case Studies
Data Analysis Foundations with Python: Master Python and Data Analysis using NumPy, Pandas, Matplotlib, and Seaborn: A Hands-On Guide with Projects and Case Studies.
Python for Data Analysis The Ultimate Beginner|s Guide to Learn programming in Python for Data Science with Pandas and NumPy, Master Statistical Analysis, and Visualization
Python for Data Analysis A Basic Guide for Beginners to Learn the Language of Python Programming Codes Applied to Data Analysis with Libraries Software Pandas, Numpy, and IPython
Ultimate Python Libraries for Data Analysis and Visualization Leverage Pandas, NumPy, Matplotlib, Seaborn, Julius AI and No-Code Tools for Data Acquisition, Visualization, and Statistical Analysis
Isogeometric Topology Optimization: Methods, Applications and Implementations (Engineering Applications of Computational Methods Book 7)
Python Programming 2 Books in 1 Python for Data Analysis and Science with Big Data Analysis, Statistics and Machine Learning
Python For Data Analysis A Step-by-Step Guide to Pandas, NumPy, and SciPy for Data Wrangling, Analysis, and Visualization
Python for Data Analysis A Complete Crash Course on Python for Data Science to Learn Essential Tools and Python Libraries, NumPy, Pandas, Jupyter Notebook, Analysis and Visualization