BOOKS - SCIENCE AND STUDY - Combinatorial Inference in Geometric Data Analysis
Combinatorial Inference in Geometric Data Analysis - Brigitte Le Roux, Solene Bienaise, Jean-Luc Durand 2019 PDF CRC Press BOOKS SCIENCE AND STUDY
ECO~14 kg CO²

1 TON

Views
68405

Telegram
 
Combinatorial Inference in Geometric Data Analysis
Author: Brigitte Le Roux, Solene Bienaise, Jean-Luc Durand
Year: 2019
Pages: 269
Format: PDF
File size: 10,42 MB
Language: ENG



Pay with Telegram STARS
Book Description: Combinatorial Inference in Geometric Data Analysis Author: Brigitte Le Roux, Solene Bienaise, Jean-Luc Durand 2019 269 CRC Press Summary: Combinatorial Inference in Geometric Data Analysis provides an overview of multidimensional statistical inference methods applicable to clouds of points that do not assume any knowledge of the data-generating process or distribution and are not based on random modeling but rather on permutation procedures recasting in a combinatorial framework. This book focuses on the need to study and understand the technological evolution process, the need for a personal paradigm for perceiving the technological development of modern knowledge as the basis for human survival and unity in a warring state. The text begins with an introduction to geometric data analysis, which is a set of observations that can be conceptualized as a Euclidean cloud of points. The author explains how this approach differs from traditional statistics and highlights its advantages in handling complex data sets. The book then delves into the principles of combinatorial inference, discussing various techniques such as the nearest neighbor algorithm and the k-d tree algorithm.
Комбинаторный вывод в анализе геометрических данных Автор: Брижит Ле Ру, Солен Бьенез, Жан-Люк Дюран 2019 269 CRC Резюме прессы: Комбинаторный вывод в анализе геометрических данных обеспечивает обзор многомерных статистических методов вывода, применимых к облакам точек, которые не предполагают каких-либо знаний о процессе или распределении генерации данных и основаны не на случайном моделировании, а скорее на процедурах перестановки, изменяющихся в комбинаторной структуре. Эта книга посвящена необходимости изучения и понимания процесса технологической эволюции, необходимости личностной парадигмы восприятия технологического развития современных знаний как основы выживания человека и единства в воюющем государстве. Текст начинается с введения в анализ геометрических данных, который представляет собой набор наблюдений, которые могут быть концептуализированы как евклидово облако точек. Автор объясняет, чем этот подход отличается от традиционной статистики, и подчеркивает его преимущества в работе со сложными наборами данных. Затем книга углубляется в принципы комбинаторного вывода, обсуждая различные техники, такие как алгоритм ближайшего соседа и алгоритм k-d дерева.
Uscita combinata nell'analisi dei dati geometrici Autore: Brigitte Roux, Solain Bienez, Jean-Luc Duran 2019 269 CRC Riepilogo stampa: L'output di combinazione nell'analisi dei dati geometrici fornisce una panoramica dei metodi di output statistici multi-dimensioni applicabili alle nuvole dei punti che non prevedono alcuna conoscenza del processo o della distribuzione della generazione dei dati e che non si basano su simulazioni casuali, ma piuttosto su procedure di riposizionamento che cambiano nella struttura di combinazione. Questo libro è dedicato alla necessità di studiare e comprendere il processo di evoluzione tecnologica, la necessità di un paradigma personale di percezione dello sviluppo tecnologico delle conoscenze moderne come base della sopravvivenza dell'uomo e dell'unità in uno stato in guerra. Il testo inizia con l'introduzione di dati geometrici nell'analisi, che è un insieme di osservazioni che possono essere concettualizzate come una nuvola di punti euclidico. L'autore spiega come questo approccio sia diverso dalle statistiche tradizionali e evidenzia i suoi vantaggi nel gestire insiemi di dati complessi. Poi il libro approfondisce i principi di output combinatore, discutendo diverse tecniche, come l'algoritmo del vicino più vicino e l'algoritmo k-d albero.
''
幾何学的データ分析における組み合わせ推論Brigitte Roux、 Solene Bienez、 Jean-Luc Durand 2019 269 CRCプレス要約: 幾何学的データ解析における組合せ推論は、データ生成のプロセスまたは分布の知識を仮定せず、ランダムモデリングに基づいているのではなく、組み合わせ構造において変化する多変量の統計推論方法の概要を提供する。この本は、科学技術の進化の過程を研究し、理解する必要性に捧げられています。テキストは、ユークリッド点群として概念化できる一連の観測群である幾何学的データ解析の紹介から始まります。著者は、このアプローチが従来の統計とどのように異なるかを説明し、複雑なデータセットを操作する際の利点を強調しています。次に、この本は組合せ推論の原理を掘り下げ、近傍アルゴリズムやk-dツリーのアルゴリズムのような様々な手法について論じている。

You may also be interested in:

Combinatorial Inference in Geometric Data Analysis
Geometric Harmonic Analysis IV: Boundary Layer Potentials in Uniformly Rectifiable Domains, and Applications to Complex Analysis (Developments in Mathematics, 75)
An Introduction to Combinatorial Analysis
Python Data Analysis Transforming Raw Data into Actionable Intelligence with Python|s Data Analysis Capabilities
Python Data Analysis Transforming Raw Data into Actionable Intelligence with Python|s Data Analysis Capabilities
Hands-On Data Analysis with Pandas Efficiently perform data collection, wrangling, analysis, and visualization using Python
Time Series Analysis with Python Cookbook: Practical recipes for exploratory data analysis, data preparation, forecasting, and model evaluation
Pandas in 7 Days: Utilize Python to Manipulate Data, Conduct Scientific Computing, Time Series Analysis, and Exploratory Data Analysis (English Edition)
Ultimate Python Libraries for Data Analysis and Visualization: Leverage Pandas, NumPy, Matplotlib, Seaborn, Julius AI and No-Code Tools for Data Acquisition, … and Statistical Analysis (English
Data Analytics Practical Guide to Leveraging the Power of Algorithms, Data Science, Data Mining, Statistics, Big Data, and Predictive Analysis to Improve Business, Work, and Life
Advanced Data Analytics with AWS Explore Data Analysis Concepts in the Cloud to Gain Meaningful Insights and Build Robust Data Engineering Workflows Across Diverse Data Sources
Data Analytics: Practical Guide to Leveraging the Power of Algorithms, Data Science, Data Mining, Statistics, Big Data, and Predictive Analysis to Improve Business, Work, and Life
Advanced Data Analytics with AWS Explore Data Analysis Concepts in the Cloud to Gain Meaningful Insights and Build Robust Data Engineering Workflows Across Diverse Data Sources
Advanced Data Analytics with AWS: Explore Data Analysis Concepts in the Cloud to Gain Meaningful Insights and Build Robust Data Engineering Workflows Across Diverse Data Sources (English Edition)
Data Analysis Foundations with Python: Master Python and Data Analysis using NumPy, Pandas, Matplotlib, and Seaborn: A Hands-On Guide with Projects and Case Studies.
Data Analysis Foundations with Python Master Python and Data Analysis using NumPy, Pandas, Matplotlib, and Seaborn A Hands-On Guide with Projects and Case Studies
Data Analysis Foundations with Python Master Python and Data Analysis using NumPy, Pandas, Matplotlib, and Seaborn A Hands-On Guide with Projects and Case Studies
Python for Data Analysis The Ultimate Beginner|s Guide to Learn programming in Python for Data Science with Pandas and NumPy, Master Statistical Analysis, and Visualization
Annals of Discrete Mathematics, Volume 25: Analysis and Design of Algorithms for Combinatorial Problems
Ultimate Python Libraries for Data Analysis and Visualization Leverage Pandas, NumPy, Matplotlib, Seaborn, Julius AI and No-Code Tools for Data Acquisition, Visualization, and Statistical Analysis
Python for Data Analysis A Basic Guide for Beginners to Learn the Language of Python Programming Codes Applied to Data Analysis with Libraries Software Pandas, Numpy, and IPython
Geometric Complex Analysis
Python For Data Analysis A Step-by-Step Guide to Pandas, NumPy, and SciPy for Data Wrangling, Analysis, and Visualization
Python Programming 2 Books in 1 Python for Data Analysis and Science with Big Data Analysis, Statistics and Machine Learning
Algorithms For Analysis, Inference, And Control Of Boolean Networks
Python for Data Analysis A Complete Crash Course on Python for Data Science to Learn Essential Tools and Python Libraries, NumPy, Pandas, Jupyter Notebook, Analysis and Visualization
Data Science With Rust A Comprehensive Guide - Data Analysis, Machine Learning, Data Visualization & More
Data Science With Rust A Comprehensive Guide - Data Analysis, Machine Learning, Data Visualization & More
Data Science With Rust: A Comprehensive Guide - Data Analysis, Machine Learning, Data Visualization and More
Applied Multivariate Analysis: Using Bayesian and Frequentist Methods of Inference
Intelligent Data Analysis From Data Gathering to Data Comprehension (The Wiley Series in Intelligent Signal and Data Processing)
Causal Inference for Data Science (Final Release)
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
Python Data Science The Ultimate Handbook for Beginners on How to Explore NumPy for Numerical Data, Pandas for Data Analysis, IPython, Scikit-Learn and Tensorflow for Machine Learning and Business
Evidence-Based Technical Analysis: Applying the Scientific Method and Statistical Inference to Trading Signals
Modern Statistics with R From Wrangling and Exploring Data to Inference and Predictive Modelling Second Edition
Refining the Concept of Scientific Inference When Working with Big Data: Proceedings of a Workshop
Modern Statistics with R From Wrangling and Exploring Data to Inference and Predictive Modelling Second Edition
Understanding Results with Python 100 Drills for Data Analysis and Statistical Analysis
Understanding Results with Python 100 Drills for Data Analysis and Statistical Analysis