
BOOKS - Speech recognition technology and applications

Speech recognition technology and applications
Author: Paes V.-F.
Year: 2022
Format: PDF
File size: PDF 2.6 MB
Language: English

Year: 2022
Format: PDF
File size: PDF 2.6 MB
Language: English

Speech Recognition Technology and Applications: Understanding the Evolution of Modern Knowledge for Human Survival Introduction The world we live in today is vastly different from the one our ancestors knew just a few decades ago. With the rapid advancement of technology, the way we communicate, work, and interact with each other has changed dramatically. One of the most significant breakthroughs in recent years is speech recognition technology, which has revolutionized the way we interact with machines and devices. This technology has the potential to change the way we live, work, and communicate, and it is essential to understand its evolution, applications, and impact on society. In this article, we will delve into the world of speech recognition technology and explore its history, current state, and future prospects. Early Beginnings Speech recognition technology has been around for several decades, but it wasn't until the 1980s that the first commercial speech recognition systems were developed. These early systems were based on Hidden Markov Models (HMMs), which were simple statistical models that could recognize a limited set of spoken words. However, these systems were not very accurate, and they required a lot of training data to achieve even moderate recognition accuracy. Despite their limitations, these early systems laid the foundation for the development of more sophisticated algorithms and models that would follow. The Advent of Deep Learning In the mid-20000s, the field of speech recognition underwent a significant transformation with the advent of deep learning techniques.
Технология распознавания речи и приложения: понимание эволюции современных знаний для выживания человека Введение Мир, в котором мы живем сегодня, значительно отличается от того, который наши предки знали всего несколько десятилетий назад. С быстрым развитием технологий то, как мы общаемся, работаем и взаимодействуем друг с другом, кардинально изменилось. Один из самых значительных прорывов последних лет - технология распознавания речи, которая произвела революцию в том, как мы взаимодействуем с машинами и устройствами. Эта технология может изменить то, как мы живем, работаем и общаемся, и важно понимать ее эволюцию, применение и влияние на общество. В этой статье мы углубимся в мир технологии распознавания речи и изучим ее историю, текущее состояние и дальнейшие перспективы. Технология распознавания речи Early Beginnings Speech существует уже несколько десятилетий, но только в 1980-х годах были разработаны первые коммерческие системы распознавания речи. Эти ранние системы были основаны на скрытых марковских моделях (HMM), которые были простыми статистическими моделями, которые могли распознавать ограниченный набор произносимых слов. Однако эти системы были не очень точными, и для достижения даже умеренной точности распознавания им требовалось много обучающих данных. Несмотря на свои ограничения, эти ранние системы заложили основу для разработки более сложных алгоритмов и моделей, которые бы последовали. Пришествие глубокого обучения В середине 2000-х годов область распознавания речи претерпела значительные преобразования с появлением техник глубокого обучения.
Technologie de reconnaissance vocale et applications : comprendre l'évolution des connaissances modernes pour la survie humaine Introduction monde dans lequel nous vivons aujourd'hui est très différent de celui que nos ancêtres connaissaient il y a seulement quelques décennies. Avec le développement rapide de la technologie, la façon dont nous communiquons, travaillons et interagissons entre nous a radicalement changé. L'une des avancées les plus importantes de ces dernières années est la technologie de reconnaissance vocale, qui a révolutionné la façon dont nous interagissons avec les machines et les appareils. Cette technologie peut changer la façon dont nous vivons, travaillons et communiquons, et il est important de comprendre son évolution, son application et son impact sur la société. Dans cet article, nous allons approfondir le monde de la technologie de reconnaissance vocale et examiner son histoire, son état actuel et d'autres perspectives. La technologie de reconnaissance vocale Early Beginnings Speech existe depuis plusieurs décennies, mais ce n'est que dans les années 1980 que les premiers systèmes commerciaux de reconnaissance vocale ont été développés. Ces premiers systèmes étaient basés sur des modèles de Markov cachés (HMM), qui étaient de simples modèles statistiques qui pouvaient reconnaître un ensemble limité de mots prononcés. Cependant, ces systèmes n'étaient pas très précis, et pour obtenir une précision de reconnaissance même modérée, ils avaient besoin de beaucoup de données d'apprentissage. Malgré leurs limites, ces premiers systèmes ont jeté les bases du développement d'algorithmes et de modèles plus sophistiqués qui suivraient. L'avènement de l'apprentissage profond Au milieu des années 2000, le domaine de la reconnaissance vocale a subi une transformation considérable avec l'émergence de techniques d'apprentissage profond.
Tecnología de reconocimiento de voz y aplicaciones: comprender la evolución del conocimiento moderno para la supervivencia humana Introducción mundo en el que vivimos hoy es significativamente diferente al que conocían nuestros antepasados hace apenas unas décadas. Con el rápido desarrollo de la tecnología, la forma en que nos comunicamos, trabajamos e interactuamos entre nosotros ha cambiado radicalmente. Uno de los avances más significativos de los últimos es la tecnología de reconocimiento de voz, que ha revolucionado la forma en que interactuamos con máquinas y dispositivos. Esta tecnología puede cambiar la forma en que vivimos, trabajamos y comunicamos, y es importante entender su evolución, aplicación e impacto en la sociedad. En este artículo profundizaremos en el mundo de la tecnología del reconocimiento de voz y exploraremos su historia, estado actual y perspectivas futuras. La tecnología de reconocimiento de voz Early Beginnings Speech existe desde hace varias décadas, pero no fue hasta la década de 1980 cuando se desarrollaron los primeros sistemas comerciales de reconocimiento de voz. Estos primeros sistemas se basaban en modelos ocultos de Markov (HMM), que eran simples modelos estadísticos que podían reconocer un conjunto limitado de palabras habladas. n embargo, estos sistemas no eran muy precisos, y necesitaban muchos datos de aprendizaje para lograr incluso una precisión de reconocimiento moderada. A pesar de sus limitaciones, estos primeros sistemas sentaron las bases para el desarrollo de algoritmos y modelos más complejos que seguirían. La llegada del aprendizaje profundo A mediados de la década de 2000, el campo del reconocimiento del habla sufrió transformaciones significativas con la aparición de técnicas de aprendizaje profundo.
Tecnologia di riconoscimento vocale e applicazione: comprensione dell'evoluzione della conoscenza moderna per la sopravvivenza umana Introduzione Il mondo in cui viviamo oggi è molto diverso da quello che i nostri antenati hanno conosciuto solo qualche decennio fa. Con il rapido sviluppo della tecnologia, il modo in cui interagiamo, lavoriamo e interagiamo è cambiato radicalmente. Uno dei progressi più importanti degli ultimi anni è la tecnologia di riconoscimento vocale, che ha rivoluzionato il modo in cui interagiamo con macchine e dispositivi. Questa tecnologia può cambiare il modo in cui viviamo, lavoriamo e comunichiamo, ed è importante comprenderne l'evoluzione, l'applicazione e l'impatto sulla società. In questo articolo, approfondiremo il mondo del riconoscimento vocale e studieremo la sua storia, lo stato attuale e le prospettive future. La tecnologia di riconoscimento vocale Early Beginnings Speech esiste da decenni, ma solo negli annì 80 sono stati sviluppati i primi sistemi commerciali di riconoscimento vocale. Questi sistemi iniziali erano basati su modelli marchi nascosti (HMM) che erano semplici modelli statistici in grado di riconoscere un numero limitato di parole pronunciate. Tuttavia, questi sistemi non erano molto precisi e richiedevano molti dati di apprendimento per ottenere un'accuratezza anche moderata. Nonostante le loro limitazioni, questi primi sistemi hanno gettato le basi per sviluppare algoritmi e modelli più complessi da seguire. L'arrivo di formazione profonda A metà degli anni 2000, il campo del riconoscimento vocale ha subito notevoli trasformazioni con l'avvento di tecniche di apprendimento profondo.
Spracherkennungstechnologie und Anwendungen: Die Evolution des modernen Wissens für das menschliche Überleben verstehen Einführung Die Welt, in der wir heute leben, unterscheidet sich deutlich von der, die unsere Vorfahren noch vor wenigen Jahrzehnten kannten. Mit der rasanten Entwicklung der Technologie hat sich die Art und Weise, wie wir miteinander kommunizieren, arbeiten und interagieren, dramatisch verändert. Einer der bedeutendsten Durchbrüche der letzten Jahre ist die Spracherkennungstechnologie, die die Art und Weise revolutioniert hat, wie wir mit Maschinen und Geräten interagieren. Diese Technologie hat das Potenzial, die Art und Weise, wie wir leben, arbeiten und kommunizieren, zu verändern, und es ist wichtig, ihre Entwicklung, Anwendung und Auswirkungen auf die Gesellschaft zu verstehen. In diesem Artikel tauchen wir in die Welt der Spracherkennungstechnologie ein und untersuchen ihre Geschichte, ihren aktuellen Stand und ihre Zukunftsperspektiven. Die Spracherkennungstechnologie Early Beginnings Speech gibt es schon seit mehreren Jahrzehnten, aber erst in den 1980er Jahren wurden die ersten kommerziellen Spracherkennungssysteme entwickelt. Diese frühen Systeme basierten auf Hidden Markov Models (HMMs), einfachen statistischen Modellen, die einen begrenzten Satz gesprochener Wörter erkennen konnten. Diese Systeme waren jedoch nicht sehr genau, und sie benötigten viele Trainingsdaten, um eine selbst moderate Erkennungsgenauigkeit zu erreichen. Trotz ihrer Einschränkungen legten diese frühen Systeme den Grundstein für die Entwicklung komplexerer Algorithmen und Modelle, die folgen würden. Die Ankunft von Deep arning Mitte der 2000er Jahre hat der Bereich der Spracherkennung mit dem Aufkommen von Deep-arning-Techniken erhebliche Veränderungen erfahren.
''
Konuşma Tanıma Teknolojisi ve Uygulamaları: İnsanın Hayatta Kalması için Modern Bilginin Evrimini Anlamak Giriş Bugün yaşadığımız dünya, atalarımızın sadece birkaç on yıl önce bildiğinden önemli ölçüde farklıdır. Teknolojinin hızla gelişmesiyle, birbirimizle iletişim kurma, çalışma ve etkileşim kurma şeklimiz önemli ölçüde değişti. Son yılların en önemli atılımlarından biri, makineler ve cihazlarla nasıl etkileşime girdiğimizi değiştiren konuşma tanıma teknolojisidir. Bu teknoloji yaşama, çalışma ve iletişim kurma şeklimizi değiştirebilir ve evrimini, uygulamasını ve toplum üzerindeki etkisini anlamak önemlidir. Bu yazıda, konuşma tanıma teknolojisi dünyasına giriyoruz ve tarihini, mevcut durumunu ve gelecekteki beklentilerini araştırıyoruz. Erken Başlangıçlar Konuşma teknolojisi onlarca yıldır var, ancak 1980'lere kadar ilk ticari konuşma tanıma sistemlerinin geliştirilmesi değildi. Bu erken sistemler, sınırlı sayıda konuşulan kelimeyi tanıyabilen basit istatistiksel modeller olan gizli Markov modellerine (HMM'ler) dayanıyordu. Bununla birlikte, bu sistemler çok doğru değildi ve ılımlı bir tanıma doğruluğu elde etmek için çok fazla eğitim verisi gerektiriyordu. Sınırlamalarına rağmen, bu erken sistemler daha karmaşık algoritmaların ve modellerin geliştirilmesine zemin hazırladı. 2000'li yılların ortalarında, konuşma tanıma alanı, derin öğrenme tekniklerinin ortaya çıkmasıyla önemli bir dönüşüm geçirdi.
語音識別和應用技術:了解現代知識對人類生存的演變介紹我們今天生活的世界與幾十前我們的祖先所知道的世界截然不同。隨著技術的飛速發展,我們的溝通、工作和互動方式發生了巨大變化。近來最重要的突破之一是語音識別技術,它徹底改變了我們與機器和設備的交互方式。這項技術可以改變我們的生活、工作和溝通方式,了解其演變、應用和對社會的影響至關重要。本文將深入研究語音識別技術的世界,研究其歷史、現狀和展望。Early Beginnings Speech語音識別技術已經存在了幾十,但是直到1980代,才開發出了第一個商業語音識別系統。這些早期的系統基於隱藏的馬可夫模型(HMM),這些模型是簡單的統計模型,可以識別一組有限的發音單詞。但是,這些系統不是很準確,甚至需要大量的培訓數據才能達到適度的識別精度。盡管存在局限性,但這些早期系統為開發更復雜的算法和模型奠定了基礎。深度學習的到來在2000代中期,隨著深度學習技術的出現,語音識別領域發生了重大變化。
